Lecture 5 2022/2023 Microwave Devices and Circuits for Radiocommunications

2022/2023

- 2C/1L, MDCR
- <u>Attendance at minimum 7 sessions (course or</u> <u>laboratory)</u>
- Lectures- associate professor Radu Damian
 - Tuesday 12-14, Online, P8
 - E 50% final grade
 - problems + (2p atten. lect.) + (3 tests) + (bonus activity)
 - first test L1: 21-28.02.2023 (t2 and t3 not announced, lecture)
 - 3att.=+0.5p
 - all materials/equipments authorized

- Laboratory associate professor Radu Damian
 - Tuesday 08-12, II.13 / (08:10)
 - L 25% final grade
 - ADS, 4 sessions
 - Attendance + personal results
 - P 25% final grade
 - ADS, 3 sessions (-1? 21.02.2022)
 - personal homework

Materials

http://rf-opto.etti.tuiasi.ro

$\epsilon ightarrow c$	ul de Microunde si Op: X (i) Not secure rf-opto.etti.tuiasi.ro/microwave_cd.php?chg_lang=0	181				± ■ ■ ■ ■
	Main <u>Courses</u> Master Staff Research Students Admin <u>Microwave CD</u> Optical Communications Optoelectronics Internet Antennas Practica Networks Educ	ational software				
	Microwave Devices and Circuits for Radiocommunications (En Course: MDCR (2017-2018)	iglish)				
	Course Coordinator: Assoc.P. Dr. Radu-Florin Damian Code: ED05412T Discipline Type: DOS; Alternative, Specialty Credits: 4 Enrollment Year: 4, Sem. 7 Activities Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable: Evaluation Type: Examen A: 50%, (Test/Colloquium)	FTTI ETTI K English F	RF-	- OP ⁻	TO	The second
	B: 25%, (Seminary/Laboratory/Project Activity) D: 25%, (Homework/Specialty papers) Grades Aggregate Results	Main	Courses	Master	Staff	Rese
	Attendance Course Laboratory	Grades	Student List	<u>Exams</u>	Photos	
	Lists Bonus-uri acumulate (final) Studenti care nu pot intra in examen	Online Ex	ams			
	Materials Course Slides	In order to partie	cipate at online e	xams you mu	s <mark>t g</mark> et ready	following

An also marked as a second second

11---

C.

<u>MDCR Lecture 1</u> (pdf, 5.43 MB, en, 38) <u>MDCR Lecture 2</u> (pdf, 3.67 MB, en, 38) <u>MDCR Lecture 3</u> (pdf, 4.76 MB, en, 38) MDCR Lecture 4 (pdf, 5.58 MB, en, 38)

Materials

RF-OPTO

- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011

Photos

- sent by email/online exam
- used at lectures/laboratory

Photos

Date:

 Grupa
 5304 (2015/2016)

 Specializarea
 Tehnologii si sisteme de telecomunicatii

 Marca
 5184

Trimite email acestui student | Adauga acest student la lista (0)

irente	Observatii
Buget	
Fara Bursa	
	Buget

Date:

 Grupa
 5304 (2015/2016)

 Specializarea
 Tehnologii si sisteme de telecomunicatii

 Marca
 5244

Trimite email acestui student | Adauga acest student la lista (0)

Observatii

Finantare	Buget	
Bursa	Bursa de Studii	

Acceseaza ca acest student

Note obtinute

Date:

Grupa	5304 (2015/2016)
Specializarea	Tehnologii si sisteme de telecomunicatii
Marca	5184

Profile photo

Profile photo – online "exam"

Examene online: 2020/2021

Disciplina: MDC (Microwave Devices and Circuits (Engleza))

Pas 3

Nr.	Titlu		Start	Stop	Text
1	1 Profile photos		03/03/2021; 10:00 08/04/2021; 08:00		Online "exam" created f .
2	Mini Test 1 (lecture 2)		03/03/2021; 15:35 03/03/2021; 15:		The current test consis
Gr	upa	5304 (2015/201	6)		
Sp	Specializarea Tehnologii si sis		teme de telecomunicatii		
M	arca	5184			

Acceseaza ca acest student

Access

Not customized

1			Date:				
	-	10.00	Grupa	5304 (2015/2016)		
			Specializarea	Tehnologii si siste	eme de	telecomu	inicati
			Marca	5184			
cceseaza d		est student					
ote obt Disciplina	Tip	Data	Descriere		Nota	Puncte	Obs.
ote obt	Tip Teh	Data nologii Web			Tablik over 00250	Puncte	Obs.
ote obt Disciplina	Tip	Data			Nota 10	Puncte	Obs.
ote obt	Tip Teh	Data nologii Web	Nota finala	Web 2013/2014	Tablik over 00250	Puncte - 7.55	Obs.
ote obt Disciplina	Tip Teh N	Data nologii Web 17/01/2014	Nota finala Colocviu Tehnologii		10 10	15	Obs.

Online

access to online exams requires the password received by email

Online

access email/password

	Main	Cours	es	Master	Staff	Researc			Main	Courses	Master	Staff	Researc
	Grades	Student	t List	Exams	Photos				Grades	Student List	Exams	Photos	
PC	OPESC	CU GO	OPO	D ION				PC	PESC	CU GOP	O ION		
			D	ate:						22.0	Date:		
	Fotogr nu exi		0	Grupa	5700 (2019/	2020)		Fotogr nu exi		afia sta	Grupa	5700 (2019)	/2020)
			5	Specializarea	Inginerie ele	ctronica si telec					Specializarea	Inginerie ele	ectronica si telec
			N	Marca	7000000						Marca	7000000	
You	access the	ite as this	stude	nt!				You a	access the si	te as this stude	nt (including	exams)!	>

Password

received by email

Important message from RF-OPTO Inbox ×

Radu-Florin Damian

to me, POPESCU -

ズ Romanian → > English → Translate message

Laboratorul de Microunde si Optoelectronica Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei Universitatea Tehnica "Gh. Asachi" Iasi

In atentia: POPESCU GOPO ION

Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare.

Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION

The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation.

Save this message in a safe place for later use

Reply

🗮 Reply all 🔹 🗰 Forward

Laboratorul de Microunde si Optoelectronica Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei Universitatea Tehnica "Gh. Asachi" Iasi

In atentia: POPESCU GOPO ION

Parola pentru a accesa examenele pe server-ul **rf-opto** este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare.

Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION

The password to access the exams on the **rf-opto** server is Password:

Login to the server, with this password, as soon as possible, for confirmation.

Save this message in a safe place for later use

Online exam manual

- The online exam app used for:
 - Iectures (attendance)
 - Iaboratory
 - project
 - examinations

Examen online

always against a timetable

long period (lecture attendance/laboratory results)

short period (tests: 15min, exam: 2h)

Online results submission

many numerical values/files

ac																								10
Schema finala	Rezultate - castig	Rezultate - zgomot	Fisier justificare calcul (factor andrei)		T1, fisier parmetri S	T2, fisier parmetri S	Z1	72	Z3	Z4	Z5	Z6	17	Ze1	Z01	Ze2	Zo2	Ze3	Zo3	Ze4	Zo4	Ze5	Zo5	Ze6
<u>86 -</u> <u>5428 -</u> <u>259</u>	86 - 5428 - 260	86 - 5428 - 261	86 - 5428 - 316	-	<u>86 -</u> <u>5428 -</u> <u>314</u>	<u>86 -</u> <u>5428 -</u> <u>315</u>	148.33	155.88	202.12	164.35	180.91	30.29	18 <mark>5</mark> .19	79.9	37	68.89	45.14	61.83	45.05	57.97	46.02	61.85	45.05	68.8
<u>86 -</u> <u>5622 -</u> <u>259</u>	<u>86 -</u> <u>5622 -</u> <u>260</u>	<u>86 -</u> <u>5622 -</u> <u>261</u>	<u>86 -</u> <u>5622 -</u> <u>316</u>	<u>86 -</u> <u>5622 -</u> <u>262</u>	<u>86 -</u> <u>5622 -</u> <u>314</u>	<u>86 -</u> <u>5622 -</u> <u>315</u>	26.97	153.5	34.64	35.79	55.56	26.212	10.693	0	0	0	0	0	0	0	0	0	0	0
<u>86 -</u> <u>5488 -</u> <u>259</u>	<u>86 -</u> <u>5488 -</u> <u>260</u>	<u>86 -</u> <u>5488 -</u> <u>261</u>	<u>86 -</u> 5488 - 316	<u>86 -</u> <u>5488 -</u> <u>262</u>	<u>86 -</u> <u>5488 -</u> <u>314</u>	<u>86 -</u> <u>5488 -</u> <u>315</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>86 -</u> <u>5391 -</u> <u>259</u>	<u>86 -</u> 5391 - 260	5391 -	<u>86 -</u> 5391 - 316	-	-	-	50	50	50	50	50	50	50	70.14	40.39	61.85	44.59	55.7	45.2	54.89	45.38	58.65	45.8	70.0
<u>86 -</u> <u>5664 -</u> <u>259</u>	<u>86 -</u> <u>5664 -</u> <u>260</u>	<u>86 -</u> <u>5664 -</u> <u>261</u>	<u>86 -</u> 5664 - 316	5	<u>86 -</u> <u>5664 -</u> <u>314</u>	<u>86 -</u> <u>5664 -</u> <u>315</u>	168.02	150.5	178.28	133.75	92.12	121.67	144.48	<mark>94.3</mark> 6	<mark>36.</mark> 19	70.77	42.56	65.69	42.05	55.17	42.29	65.59	42.05	70.7
<u>86 -</u> <u>5665 -</u> <u>259</u>	<u>86 -</u> <u>5665 -</u> <u>260</u>	<u>86 -</u> <u>5665 -</u> <u>261</u>	<u>86 -</u> <u>5665 -</u> <u>316</u>	-	<u>86 -</u> <u>5665 -</u> <u>314</u>	<u>86 -</u> <u>5665 -</u> <u>315</u>	162.2	80.8	209.2	140.85	135.1	183.7	167.6	94.58	36.15	78.16	39.77	65.57	45.05	65.57	45.05	78.16	39.77	94.5
<u>86 -</u> 5433 - 259	<u>86 -</u> 5433 - 260	<u>86 -</u> <u>5433 -</u> <u>261</u>	<u>86 -</u> 5433 - 316	-	<u>86 -</u> <u>5433 -</u> <u>314</u>	<u>86 -</u> <u>5433 -</u> <u>315</u>	165.138	106.228	226.157	130.134	72.71	180.177	164.616	101.36	36.11	77.22	42.49	68.02	45.62	60	45.42	68.02	45.62	77.2
<u>86 -</u> <u>5608 -</u> <u>259</u>	<u>86 -</u> <u>5608 -</u> <u>260</u>	<u>86 -</u> <u>5608 -</u> <u>261</u>	<u>86 -</u> <u>5608 -</u> <u>316</u>	-	<u>86 -</u> <u>5608 -</u> <u>314</u>	<u>86 -</u> <u>5608 -</u> <u>315</u>	150.84	152.5	30.94	32.37	54.36	19.837	29.85	64.14	40.145	54.32	46.32	53.8	46.7	53.8	46.7	54.32	46.32	54.9
<u>86 -</u> 5555 - 259	<u>86 -</u> <u>5555 -</u> <u>260</u>	<u>86 -</u> <u>5555 -</u> <u>261</u>	86 - 5555 - 316	-	<u>86 -</u> <u>5555 -</u> <u>314</u>	<u>86 -</u> <u>5555 -</u> <u>315</u>	168.001	150.288	178.399	133.115	92.491	121.257	144.126	97.05	36.16	71.13	43.09	65.45	42.12	55.66	42.18	65.45	42.12	71.1

Online results submission

many numerical values

Online results submission

Grade = Quality of the work + + Quality of the submission

TEM transmission lines

Course Topics

Transmission lines

- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers ?

The lossless line

 $V(z) = V_0^+ e^{-j \cdot \beta \cdot z} + V_0^- e^{j \cdot \beta \cdot z}$ $I(z) = \frac{V_0^+}{Z_0} e^{-j \cdot \beta \cdot z} - \frac{V_0^-}{Z_0} e^{j \cdot \beta \cdot z}$ $Z_{L} = \frac{V(0)}{I(0)} \qquad \qquad Z_{L} = \frac{V_{0}^{+} + V_{0}^{-}}{V_{0}^{+} - V_{0}^{-}} \cdot Z_{0}$

 voltage reflection coefficient

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Z_o real

The lossless line

$$V(z) = V_0^+ \cdot \left(e^{-j \cdot \beta \cdot z} + \Gamma \cdot e^{j \cdot \beta \cdot z} \right) \qquad \qquad I(z) = \frac{V_0^+}{Z_0} \cdot \left(e^{-j \cdot \beta \cdot z} - \Gamma \cdot e^{j \cdot \beta \cdot z} \right)$$

time-average Power flow along the line

$$P_{avg} = \frac{1}{2} \cdot \operatorname{Re}\left\{V(z) \cdot I(z)^{*}\right\} = \frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \operatorname{Re}\left\{1 - \Gamma^{*} \cdot e^{-2j \cdot \beta \cdot z} + \Gamma \cdot e^{2j \cdot \beta \cdot z} - \left|\Gamma\right|^{2}\right\}$$

$$P_{avg} = \frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \left(1 - \left|\Gamma\right|^{2}\right)$$

Total power delivered to the load = Incident power – "Reflected" power
 Return "Loss" [dB] RL = -20 · log |Γ| [dB]

The lossless line

 input impedance of a length *l* of transmission line with characteristic impedance *Z_o*, loaded with an arbitrary impedance *Z_L*

General theory Microwave Network Analysis

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers ?

Network Analysis

- We try to separate a complex circuit into individual blocks
- These are analyzed separately (decoupled from the rest of the circuit) and are characterized only by the port level signals (black box)
- Network-level analysis allows you to put together individual block results and get a total result for the entire circuit

Network Analysis

- Each matrix is best suited for a particular mode of port excitation (V, I)
 - matrix H in common emitter connection for TB: I_B, V_{CE}
 - matrices provide the associated quantities depending on the "attack" ones
- Traditional notation of Z, Y, G, H parameters is in lowercase (z, y, g, h)
- In microwave analysis we prefer the notation in uppercase to avoid confusion with the normalized parameters

$$z = \frac{Z}{Z_0} \qquad y = \frac{Y}{Y_0} = \frac{1/Z}{1/Z_0} = \frac{Z_0}{Z} = Z_0 \cdot Y$$
$$z_{11} = \frac{Z_{11}}{Z_0} \qquad y_{11} = \frac{Y_{11}}{Y_0} = Z_0 \cdot Y_{11}$$

ABCD (transmission) matrix

ABCD (transmission) matrix

- This 2X2 matrix characterizes the "input"/"output" relation
- Allows easy chaining of multiple two-ports

Library of ABCD matrices

TABLE 4.1 ABCD Parameters of Some Useful Two-Port Circuits

Circuit	ABCD I	Parameters
• Z • • • •	A = 1 $C = 0$	B = Z $D = 1$
оо о	A = 1 $C = Y$	B = 0 $D = 1$
$\overbrace{Z_0,\beta}^{\circ}$	$A = \cos \beta \ell$ $C = j Y_0 \sin \beta \ell$	$B = jZ_0 \sin \beta \ell$ $D = \cos \beta \ell$
	A = N $C = 0$	$B = 0$ $D = \frac{1}{N}$
$\begin{array}{c c} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	$A = 1 + \frac{Y_2}{Y_3}$ $C = Y_1 + Y_2 + \frac{Y_1 Y_2}{Y_3}$	$B = \frac{1}{Y_3}$ $D = 1 + \frac{Y_1}{Y_3}$
$\begin{array}{c c} & Z_1 \\ \hline & Z_2 \\ \hline & & Z_3 \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	$A = 1 + \frac{Z_1}{Z_3}$ $C = \frac{1}{Z_3}$	$B = Z_1 + Z_2 + \frac{Z_1 Z_2}{Z_3}$ $D = 1 + \frac{Z_2}{Z_3}$

Table 4.1 © John Wiley & Sons, Inc. All rights reserved.

 V₂⁺ = 0 meaning: port 2 is terminated in matched load to avoid reflections towards the port

$$\Gamma_2 = 0 \longrightarrow V_2^+ = 0$$

S₁₁ and S₂₂ are reflection coefficients at ports
 1 and 2 when the other port is matched

S₂₁ si S₁₂ are signal amplitude gain when the other port is matched

- a,b
 - information about signal power AND signal phase
- S_{ii}
 - network effect (gain) over signal power including phase information

Measuring S parameters - VNA

Vector Network Analyzer

Figure 4.7 Courtesy of Agilent Technologies

Even/Odd Mode Analysis

Even/Odd Mode Analysis

- useful method, necessary even for multiple ports
- example, resistors, two port circuit

Even/Odd Mode Analysis

- Even/Odd mode analysis benefit from the existence of symmetry planes in the circuit
 - existing or
 - created (forced)

when exciting the ports with symmetric/anti-symmetric sources the symmetry planes are transformed into:

the combination of any two sources is equivalent for linear circuits with the superposition of:

- In linear circuits the superposition principle is always true
 - the response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually

Response (Source1 + Source2) = = Response (Source1) + Response (Source2)

Response(ODD + EVEN) = Response(ODD) + Response(EVEN)

We can benefit from existing symmetries !!

Even/Odd mode analysis

 $R_{ech}^{e} = 50\Omega + 50\Omega = 100\Omega$ $I_{1}^{e} = \frac{E^{e}}{R_{ech}^{e}} = \frac{E_{1}/2}{100\Omega} = \frac{E_{1}}{200\Omega}$ EVEN \rightarrow symmetry plane open circuit

$$R_{ech}^{o} = 50\Omega || 50\Omega = 25\Omega$$
$$I_{1}^{o} = \frac{E^{o}}{R_{ech}^{o}} = \frac{E_{1}/2}{25\Omega} = \frac{E_{1}}{50\Omega}$$

ODD → symmetry plane **virtual ground**

superposition principle

- In linear circuits we can use the superposition principle
- advantages
 - reduction of the circuit complexity
 - decrease of the number of ports (main advantage)

Response (ODD + EVEN) = Response (ODD) + Response (EVEN)

We can benefit from existing symmetries !!

Power dividers and directional couplers

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers

Introduction

Power dividers and couplers

- Desired functionality:
 - division
 - combining
- of signal power

Balanced amplifiers

Matching

feedback amplifier

- also known as T-Junctions
- characterized by a 3x3 S matrix

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S & S & S \end{bmatrix}$$

- the device is reciprocal if it does not contain:
 - anisotropic materials (usually ferrites)
 - active circuits
- to avoid power loss, we would like to have a network that is:
 - Iossless, and
 - matched at all ports
 - to avoid reflection power "loss"

reciprocal

$$[S] = [S]^{t} \qquad S_{ij} = S_{ji}, \forall j \neq i$$
$$S_{12} = S_{21}, S_{13} = S_{31}, S_{23} = S_{32}$$

matched at all ports

$$S_{ii} = 0, \forall i$$
 $S_{11} = 0, S_{22} = 0, S_{33} = 0$

then the S matrix is:

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

- reciprocal, matched at all ports, S matrix: $\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{12} & S_{23} \end{bmatrix}$
- Iossless network
 - all the power injected in one port will be found exiting the network on all ports

$$S^{*} \cdot [S]^{t} = [1] \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{kj}^{*} = \delta_{ij}, \forall i, j$$
$$\sum_{k=1}^{N} S_{ki} \cdot S_{ki}^{*} = 1 \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{kj}^{*} = 0, \forall i \neq j$$

- Iossless network $[S] = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$ $\sum_{k=1}^{N} S_{ki} \cdot S_{ki}^{*} = 1$ $\sum_{k=1}^{N} S_{ki} \cdot S_{kj}^{*} = 0, \forall i \neq j$ 6 equations / 3 unknowns
- $|S_{12}|^{2} + |S_{13}|^{2} = 1$ $|S_{12}|^{2} + |S_{23}|^{2} = 1$ $|S_{12}|^{2} + |S_{23}|^{2} = 1$ $|S_{13}|^{2} + |S_{23}|^{2} = 1$ $S_{23}^{*}S_{12} = 0$ $S_{23}^{*}S_{12} = 0$ $S_{23}^{*}S_{12} = 0$ $S_{23}^{*}S_{12} = 0$

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

- 6 equations / 3 unknowns
 - no solution is possible
- A three-port network **cannot** be simultaneously:
 - reciprocal
 - Iossless
 - matched at all ports
- If any one of these three conditions is relaxed, then a physically realizable device is possible

Nonreciprocal Three-Port Networks

- usually containing anisotropic materials, ferrites
 nonreciprocal, but matched at all ports and lossless S_{ij} ≠ S_{ji}
- S matrix

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{21} & 0 & S_{23} \\ S_{31} & S_{32} & 0 \end{bmatrix}$$

6 equations / 6 unknowns

$$|S_{12}|^{2} + |S_{13}|^{2} = 1 \qquad S_{31}^{*}S_{32} = 0$$

$$|S_{21}|^{2} + |S_{23}|^{2} = 1 \qquad S_{21}^{*}S_{23} = 0$$

$$|S_{31}|^{2} + |S_{32}|^{2} = 1 \qquad S_{12}^{*}S_{13} = 0$$

Nonreciprocal Three-Port Networks

- two possible solutionscirculators
 - clockwise circulation

$$S_{12} = S_{23} = S_{31} = 0$$

 $|S_{21}| = |S_{32}| = |S_{13}| = 1$

$$S_{21} = S_{32} = S_{13} = 0$$
$$|S_{12}| = |S_{23}| = |S_{31}| = 1$$

$$[S] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

 $[S] = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}$

Nonreciprocal Three-Port Networks

circulator often found in duplexer

Mismatched Three-Port Networks

A lossless and reciprocal three-port network can be matched only on two ports, eg. 1 and 2:

Mismatched Three-Port Networks

Lossless and . $[S] = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & S_{33} \end{bmatrix}$ $[S] = \begin{bmatrix} 0 & e^{j\theta} & 0 \\ e^{j\theta} & 0 & 0 \\ 0 & 0 & e^{j\phi} \end{bmatrix}$ $[S] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & e^{j\phi} \end{bmatrix}$ A lossless and reciprocal three-port network $S_{13} = S_{23} = 0$ $|S_{12}| = |S_{33}| = 1$ $S_{12} = e^{j\theta}$ $S_{33} = e^{j\phi}$ A lossless and reciprocal three-(1) \bigcirc port network degenerates into $S_{12} = e^{j\theta}$ two separate components: $S_{33}=e^{j\phi}$ a matched two-port line a totally mismatched one-(3)port:

characterized by a 4x4 S matrix

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix}$$

- the device is reciprocal if it does not contain:
 - anisotropic materials (usually ferrites)
 - active circuits
- to avoid power loss, we would like to have a network that is:
 - Iossless, and
 - matched at all ports
 - to avoid reflection power "loss"

reciprocal

$$[S] = [S]^{t} \qquad S_{ij} = S_{ji}, \forall j \neq i$$
$$S_{12} = S_{21}, S_{13} = S_{31}, S_{23} = S_{32}$$

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

reciprocal, matched at all ports, S matrix:

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

- Iossless network
 - all the power injected in one port will be found exiting the network on all ports

$$[S]^* \cdot [S]^t = [1] \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{kj}^* = \delta_{ij}, \forall i, j$$
$$\sum_{k=1}^{N} S_{ki} \cdot S_{ki}^* = 1 \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{kj}^* = 0, \forall i \neq j$$

$$S_{13}^{*} \cdot S_{23} + S_{14}^{*} \cdot S_{24} = 0 \quad /\cdot S_{24}^{*}$$

$$S_{12}^{*} \cdot S_{23} + S_{14}^{*} \cdot S_{34} = 0 \quad /\cdot S_{12}^{*}$$

$$S_{14}^{*} \cdot S_{13} + S_{24}^{*} \cdot S_{23} = 0 \quad /\cdot S_{13}^{*}$$

$$S_{14}^{*} \cdot S_{12} + S_{34}^{*} \cdot S_{23} = 0 \quad /\cdot S_{34}^{*}$$

$$S_{14}^{*} \cdot S_{12} + S_{34}^{*} \cdot S_{23} = 0 \quad /\cdot S_{34}^{*}$$

$$S_{23}^{*} \cdot (|S_{13}|^{2} - |S_{24}|^{2}) = 0$$

$$S_{23}^{*} \cdot (|S_{12}|^{2} - |S_{34}|^{2}) = 0$$

• one solution: $S_{14} = S_{23} = 0$ • resulting coupler is directional $[S] = |S_{12}|^2 + |S_{13}|^2 = 1$ $|S_{12}|^2 + |S_{13}|^2 = 1$ $|S_{13}| = |S_{24}|$

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix}$$

$$|S_{12}| + |S_{24}| = 1$$

$$|S_{13}|^2 + |S_{34}|^2 = 1$$

$$|S_{24}|^2 + |S_{34}|^2 = 1$$

$$|S_{12}| = |S_{34}|$$

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix} \qquad \beta - \text{voltage coupling coefficient}$$

We can choose the phase reference

$$S_{12} = S_{34} = \alpha \qquad S_{13} = \beta \cdot e^{j\theta} \qquad S_{24} = \beta \cdot e^{j\phi}$$
$$S_{12}^* \cdot S_{13} + S_{24}^* \cdot S_{34} = 0 \qquad \to \qquad \theta + \phi = \pi \pm 2 \cdot n \cdot \pi$$
$$|S_{12}|^2 + |S_{24}|^2 = 1 \qquad \to \qquad \alpha^2 + \beta^2 = 1$$

• The other possible solution for previous equations offer either essentially the same result (with a different phase reference) or the degenerate case (2 separate two port networks side by side) $S_{14}^* \cdot (|S_{13}|^2 - |S_{24}|^2) = 0$ $S_{23} \cdot (|S_{12}|^2 - |S_{34}|^2) = 0$

- A four-port network simultaneously:
 - matched at all ports
 - reciprocal
 - Iossless

is always directional

 the signal power injected into one port is transmitted only towards two of the other three ports

$$[S] = \begin{bmatrix} 0 & \alpha & \beta \cdot e^{j\theta} & 0 \\ \alpha & 0 & 0 & \beta \cdot e^{j\phi} \\ \beta \cdot e^{j\theta} & 0 & 0 & \alpha \\ 0 & \beta \cdot e^{j\phi} & \alpha & 0 \end{bmatrix}$$

- two particular choices commonly occur in practice
 - A Symmetric Coupler (90°) $\theta = \phi = \pi/2$

 $[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$ • An Antisymmetric Coupler (180°) $\theta = 0, \phi = \pi$ $\begin{bmatrix} 0 & \alpha & \beta & 0 \end{bmatrix}$

$$[S] = \begin{vmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{vmatrix}$$

Directional Coupler

Balanced amplifiers

Power dividers

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

- 6 equations / 3 unknowns
 - no solution is possible
- A three-port network **cannot** be simultaneously:
 - reciprocal
 - Iossless
 - matched at all ports
- If any one of these three conditions is relaxed, then a physically realizable device is possible

Power division of the T-junction

- consists in splitting an input line into two separate output lines
- available in various technologies for the lines

(a)

(b)

 if the lines are lossless, the network is reciprocal, so it cannot be matched at all ports simultaneously

- there may be fringing fields and higher order modes associated with the discontinuity at such a junction
- the stored energy can be accounted for by a lumped susceptance: B
- Designing the power divider targets matching to the input line Z_o
 - outputs (unmatched, Z_1 and Z_2) can be, if needed, matched to Z_0 ($\lambda/4$, binomial, Chebyshev)

$$Y_{in} = j \cdot B + \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$

- If the transmission lines are assumed to be lossless, then the characteristic impedances are real
- the matching condition can be met only if B ≅ o thus the matching condition is:

$$\frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$

In practice, if **B** is not negligible, some type of discontinuity compensation or a reactive tuning element can usually be used to cancel this susceptance, at least over a narrow frequency range.

 if V_o is the voltage at the junction, we can compute how the input power is divided between the two output lines

S matrix

© John Wiley & Sons, Inc. All rights reserved.

- lossless (unitary matrix)
- reciprocal (symmetrical matrix)
- input port is matched $S_{11} = 0$

$$P_{2} = P_{1} \cdot \frac{\alpha}{1 + \alpha} \qquad S_{21} = S_{12} = \sqrt{\frac{\alpha}{1 + \alpha}}$$
$$P_{3} = P_{1} \cdot \frac{1}{1 + \alpha} \qquad S_{31} = S_{13} = \sqrt{\frac{1}{1 + \alpha}}$$

the reflection coefficients seen looking into the output ports

$$S_{22} = \Gamma_1 = \frac{Z_0 \| Z_2 - Z_1}{Z_0 \| Z_2 + Z_1} = -\frac{1}{1 + \alpha}$$
$$S_{33} = \Gamma_2 = \frac{Z_0 \| Z_1 - Z_2}{Z_0 \| Z_1 + Z_2} = -\frac{\alpha}{1 + \alpha}$$

If we add $\lambda/4$ transformers to match outputs to Z_o S matrix:

Example

 Design a lossless T-junction divider with a 30Ω source impedance to give a 3:1 power split. Design quarter-wave matching transformers to convert the impedances of the output lines to 30Ω. (Pozar problem)

$$\begin{split} P_{in} &= \frac{1}{2} \cdot \frac{V_0^2}{Z_0} \qquad \begin{cases} P_1 + P_2 = P_{in} \\ P_1 : P_2 = 3:1 \end{cases} \implies \begin{cases} P_1 = \frac{1}{4} \cdot P_{in} \\ P_2 = \frac{3}{4} \cdot P_{in} \end{cases} \\ P_2 &= \frac{3}{4} \cdot P_{in} \end{cases} \\ P_1 &= \frac{1}{2} \cdot \frac{V_0^2}{Z_1} = \frac{1}{4} \cdot P_{in} \qquad Z_1 = 4 \cdot Z_0 = 120 \Omega \end{cases} \\ P_2 &= \frac{1}{2} \cdot \frac{V_0^2}{Z_2} = \frac{3}{4} \cdot P_{in} \qquad Z_2 = 4 \cdot Z_0 / 3 = 40 \Omega \end{cases}$$
Input match check
$$P_2 &= \frac{1}{2} \cdot \frac{V_0^2}{Z_2} = \frac{3}{4} \cdot P_{in} \qquad Z_2 = 4 \cdot Z_0 / 3 = 40 \Omega \end{cases}$$
 Input match check
$$Z_{in} = 40 \Omega \parallel 120 \Omega = 30 \Omega$$
 quarter-wave transformers
$$Z_c^i = \sqrt{Z_i \cdot Z_L} \\ Z_c^1 &= \sqrt{Z_1 \cdot Z_L} = \sqrt{120\Omega \cdot 30\Omega} = 60 \Omega \qquad Z_c^2 = \sqrt{Z_2 \cdot Z_L} = \sqrt{40\Omega \cdot 30\Omega} = 34.64 \Omega \end{split}$$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
 - reciprocal
 - matched at all ports

The impedance Z, seen looking into the Zo/3 resistor followed by a terminated output line:

$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$

The input line will be terminated with a Zo/3 resistor in series with two such lines Z in parallel

$$Z_{in} = \frac{Z_0}{3} + \frac{1}{2} \cdot \frac{4Z_0}{3} = Z_0$$

so it will be matched: $S_{11} = 0$

from symmetry: $S_{11} = S_{22} = S_{33} = 0$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
 - reciprocal
 - matched at all ports $S_{11} = S_{22} = S_{33} = 0$

If the voltage at port 1 is V1, then by voltage division the voltage V at the junction is:

$$=V_1 \cdot \frac{Z/2}{Z/2 + Z_0/3} = V_1 \cdot \frac{2Z_0/3}{2Z_0/3 + Z_0/3} = \frac{2}{3} \cdot V_1$$

The output voltages are, again by voltage division :

$$V_{2} = V_{3} = V \cdot \frac{Z_{0}}{Z_{0} + Z_{0}/3} = \frac{3}{4} \cdot V = \frac{1}{2} \cdot V_{1}$$

$$S_{21} = S_{31} = \frac{1}{2}$$
from symmetry: $S_{21} = S_{31} = S_{23} = \frac{1}{2}$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
 - reciprocal (S matrix is symmetrical) $S_{21} = S_{31} = S_{23} = \frac{1}{2}$

S matrix: $[S] = \frac{1}{2} \cdot \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$

 $P_{2} = P_{3} = \frac{1}{2} \cdot \frac{(1/2V_{1})^{2}}{Z_{0}} = \frac{1}{8} \cdot \frac{V_{1}^{2}}{Z_{0}} = \frac{1}{4} \cdot P_{in}$

Half of the supplied power is dissipated in

the 3 resistors. The output powers are 6 dB

Powers: $P_{in} = \frac{1}{2} \cdot \frac{V_1^2}{Z}$

below the input power level

• matched at all ports $S_{11} = S_{22} = S_{33} = 0$

Figure 7.7 © John Wiley & Sons, Inc. All rights reserved

- Previous power dividers suffer from a major drawback, there is not isolation between the two output ports $S_{23} = S_{32} \neq 0$
 - this requirement is important in some applications
- The Wilkinson power divider solves this problem
 - it also has the useful property of appearing lossless when the output ports are matched
 - only reflected power from the output ports is dissipated

- one input line
- two λ/4 transformers
- one resistor between the output lines

 Z_0

(b)

Even/Odd Mode Analysis

- In linear circuits we can use the superposition principle
- advantages
 - reduction of the circuit complexity
 - decrease of the number of ports (main advantage)

Response (ODD + EVEN) = Response (ODD) + Response (EVEN)

We can benefit from existing symmetries !!

the circuit in normalized and symmetric form

Even/Odd Mode Analysis

even mode, symmetry plane is open circuit

looking into port 2, $\lambda/4$ transformer with 2 load $Z_{in2}^e = \frac{Z^2}{2}$ if $Z = \sqrt{2}$ port 2 is matched $Z_{in2}^e = 1$ $V(x) = V^+ \cdot \left(e^{-j\beta \cdot x} + \Gamma \cdot e^{j\beta \cdot x}\right)^{x=0}$ at port 1 $x=-\lambda/4$ at port 2 $V_2^e = V(-\lambda/4) = jV^+ \cdot (1-\Gamma) = V_0 \bigvee_{Z_{in2}^e} V_1^e = V(0) = V^+ \cdot (1+\Gamma) = jV_0 \cdot \frac{\Gamma+1}{\Gamma-1}$ Γ : reflection coefficient seen at port 1 looking toward the resistor of normalized value 2 from the transformer $Z = \sqrt{2}$ $\Gamma = \frac{2-\sqrt{2}}{2+\sqrt{2}}$ $V_1^e = -jV_0\sqrt{2}$

looking from port 2 the $\lambda/4$ line is shortcircuited, impedance seen from port 2 is ∞

 $Z_{in2}^o = r/2$ if r=2 port 2 is matched

 $Z_{in2}^o = 1 \longrightarrow V_2^o = V_0$

 $V_1^o = 0$ in the odd mode all the power is dissipated in the r/2 resistor

input impedance in port 1

S parameters

$$\begin{split} & Z_{in1} = \frac{1}{2} \left(\sqrt{2} \right)^2 = 1 \qquad S_{11} = 0 \\ & Z_{in2}^e = 1 \qquad Z_{in2}^o = 1 \qquad \text{and} \qquad Z_{in3}^e = 1 \qquad Z_{in3}^o = 1 \qquad S_{22} = S_{33} = 0 \\ & S_{12} = S_{21} = \frac{V_1^e + V_1^o}{V_2^e + V_2^o} = -\frac{j}{\sqrt{2}} \\ & \text{and} \qquad S_{13} = S_{31} = -\frac{j}{\sqrt{2}} \\ & S_{23} = S_{32} = 0 \qquad \text{due to short or open at bisection, both eliminate transfer between the ports + reciprocal circuit} \end{split}$$

• at design frequency (length of the transformer equal to $\lambda_o/4$) we have **isolation** between the two output ports

Figure 7.12 © John Wiley & Sons, Inc. All rights reserved.

3 X Wilkinson = 4-way power divider

Figure 7.15 Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Directional couplers

Four-Port Networks

- A four-port network simultaneously:
 - matched at all ports
 - reciprocal
 - Iossless

is always directional

 the signal power injected into one port is transmitted only towards two of the other three ports

$$[S] = \begin{bmatrix} 0 & \alpha & \beta \cdot e^{j\theta} & 0 \\ \alpha & 0 & 0 & \beta \cdot e^{j\phi} \\ \beta \cdot e^{j\theta} & 0 & 0 & \alpha \\ 0 & \beta \cdot e^{j\phi} & \alpha & 0 \end{bmatrix}$$

Directional Coupler

Four-Port Networks

- two particular choices commonly occur in practice
 - A Symmetric Coupler $\theta = \phi = \pi/2$

 $[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$ • An Antisymmetric Coupler $\theta = 0, \phi = \pi$ $[S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$

Hybrid Couplers

Hybrid Couplers are directional couplers with 3 dB coupling factor

$$\alpha = \beta = 1/\sqrt{2}$$

The cuadrature (90°) hybrid

$$\left(\theta = \phi = \pi/2\right)$$

The 180° ring hybrid (rat-race)

$$(\theta = 0, \phi = \pi)$$

$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & j & 0 \\ 1 & 0 & 0 & j \\ j & 0 & 0 & 1 \\ 0 & j & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} S \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{bmatrix}$$

The cuadrature (90°) hybrid

Figure 7.21 © John Wiley & Sons, Inc. All rights reserved.

$$[S] = \frac{-1}{\sqrt{2}} \begin{bmatrix} 0 & j & 1 & 0 \\ j & 0 & 0 & 1 \\ 1 & 0 & 0 & j \\ 0 & 1 & j & 0 \end{bmatrix}$$

Even/Odd Mode Analysis

Even/Odd Mode Analysis

(b)

Figure 7.23 © John Wiley & Sons, Inc. All rights reserved.

 $b_3 = \frac{1}{2}T_e - \frac{1}{2}T_o$ $b_4 = \frac{1}{2}\Gamma_e - \frac{1}{2}\Gamma_o$

Library of ABCD matrices

TABLE 4.1 ABCD Parameters of Some Useful Two-Port Circuits

Circuit	ABCD Parameters	
	A = 1	B = Z
	C = 0	D = 1
>0		
Y	A = 1 $C = Y$	B = 0
o	C = I	D = 1
o	$A = \cos \beta \ell$	$B = j Z_0 \sin \beta \ell$
Z_0, β	$C = jY_0 \sin\beta\ell$	$D = \int \mathcal{L}(\int \sin \rho c)$ $D = \cos \beta \ell$

S parameters (from ABCD)

Relation between two port S parameters and ABCD parameters

$$A = \sqrt{\frac{Z_{01}}{Z_{02}}} \frac{(1 + S_{11} - S_{22} - \Delta S)}{2S_{21}}$$
$$B = \sqrt{Z_{01}Z_{02}} \frac{(1 + S_{11} + S_{22} + \Delta S)}{2S_{21}}$$
$$C = \frac{1}{\sqrt{Z_{01}Z_{02}}} \frac{1 - S_{11} - S_{22} + \Delta S}{2S_{21}}$$
$$D = \sqrt{\frac{Z_{02}}{Z_{01}}} \frac{1 - S_{11} + S_{22} - \Delta S}{2S_{21}}$$

$$\begin{split} S_{11} &= \frac{AZ_{02} + B - CZ_{01}Z_{02} - DZ_{01}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}} \\ S_{12} &= \frac{2(AD - BC)\sqrt{Z_{01}Z_{02}}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}} \\ S_{21} &= \frac{2\sqrt{Z_{01}Z_{02}}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}} \\ S_{22} &= \frac{-AZ_{02} + B - CZ_{01}Z_{02} + DZ_{01}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}} \end{split}$$

$$\Delta S = S_{11}S_{22} - S_{12}S_{21}$$

Matching and coupling factor

$$\begin{split} &\Gamma_{e} = \frac{j\left\{z_{2} - y_{2} + y_{1}^{2} z_{2}\right\}}{-2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &\Gamma_{o} = \frac{j\left\{z_{2} - y_{2} + y_{1}^{2} z_{2}\right\}}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{-2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &T_{e} = \frac{2}{-2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &T_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &T_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ \\ &L_{e} = \frac{2}{2y_{1} z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ \\ \\ &L_{e} = \frac{2}{2y_{1}$$

The cuadrature (90°) hybrid

Design a cuadrature (90°) hybrid working on 50 Ω , and plot the S parameters between

 $0.5f_0$ and $1.5f_0$, where f_0

is the frequency at which the length of the branches is $\lambda/4$

Solution

A cuadrature (90°) hybrid has C = 3dB, then $\beta = 1/\sqrt{2}$

$$y_2 = \sqrt{2}$$
 and $y_1 = 1$

 $Z_0 = 50\Omega$ the characteristic impedances will be:

The cuadrature (90°) hybrid

The cuadrature (90°) hybrid

 eight-way microstrip power divider with six quadrature hybrids in a Bailey configuration

Figure 7.24 Courtesy of ProSensing, Inc., Amherst, Mass.

Datasheet

T

в

(Frequency	Coupling †	Freq. Sens.	Insertion Lo	ss (dB)	 Directivity 	VSWR	max.
Model No	o. Range (Ghz)	(dB)	(dB)	Excl. Cpld Pwr	True	(dB min.)	Primary Line	Secondary Line
MDC6223-6	0.5-1.0	6 ±1.00	±0.60	0.20	1.80	25	1.15	1.15
MDC6223-1	0 0.5-1.0	10 ±1.25	±0.75	0.20	0.80	25	1.10	1.10
MDC6223-20	0 0.5-1.0	20 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6223-3	0 0.5-1.0	30 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6224-6	1.0-2.0	6 ±1.00	±0.60	0.20	1.80	25	1.15	1.15
MDC6224-1	0 1.0-2.0	10 ±1.25	±0.75	0.20	0.80	25	1.10	1.10
MDC6224-20	0 1.0-2.0	20 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6224-30	0 1.0-2.0	30 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6225-6	2.0-4.0	6 ±1.00	±0.60	0.20	1.80	22	1.15	1.15
MDC6225-1	0 2.0-4.0	10 ±1.25	±0.75	0.20	0.80	22	1.15	1.15
MDC6225-20	0 2.0-4.0	20 ±1.25	±0.75	0.15	0.20	22	1.15	1.15
MDC6225-30	0 2.0-4.0	30 ±1.25	±0.75	0.15	0.20	22	1.15	1.15
MDC6266-6	2.6-5.2	6 ±1.00	±0.60	0.20	1.80	20	1.25	1.25
MDC6266-1	0 2.6-5.2	10 ±1.25	±0.75	0.20	0.80	20	1.25	1.25
MDC6266-20	0 2.6-5.2	20 ±1.25	±0.75	0.20	0.25	20	1.25	1.25
MDC6266-3	0 2.6-5.2	30 ±1.25	±0.75	0.20	0.20	20	1.25	1.25
MDC6226-6	4.0-8.0	6 ±1.00	±0.60	0.25	1.90	20	1.25	1.25
MDC6226-1	0 4.0-8.0	10 ±1.25	±0.75	0.25	0.90	20	1.25	1.25
MDC6226-20	0 4.0-8.0	20 ±1.25	±0.75	0.25	0.30	20	1.25	1.25
MDC6226-3	0 4.0-8.0	30 ±1.25	±0.75	0.25	0.25	20	1.25	1.25
MDC6227-6	7.0-12.4	6 ±1.00	±0.50	0.30	2.00	17	1.30	1.30
MDC6227-1	0 7.0-12.4	10 ±1.00	±0.50	0.30	1.00	17	1.30	1.30
MDC6227-20		20 ±1.00	±0.50	0.30	0.35	17	1.30	1.30
11000007.0		00 1 00	0 50		0.00	. →		-1 - 11

The 180° ring hybrid (rat-race)

The 180° ring hybrid

- The 180° ring hybrid can be operated in different modes:
 - a signal applied to port 1 will be evenly split into two in-phase components at ports 2 and 3
 - input applied to port 4 it will be equally split into two components with a 180° phase difference at ports 2 and 3
 - input signals applied at ports 2 and 3, the sum of the inputs will be formed at port 1, while the difference will be formed at port 4 (power combiner)

Even/Odd Mode Analysis

Even/Odd Mode Analysis

$$S_{11} = \frac{jz_2y_s + jz_2 - j(y_2 + y_ey_sz_2) - jy_ez_2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$
$$S_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$

$$S_{21} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$
$$S_{22} = \frac{-jz_2y_s + jz_2 - j(y_2 + y_ey_sz_2) + jy_ez_2}{jz_2y_s + jz_2 + j(y_2 + y_ey_sz_2) + jy_ez_2}$$

Even mode:

 $y_e = -jy_1$ $y_s = jy_1$

Matching condition $y_1^2 + y_2^2 = 1$ $[\mathbf{S}] = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ -\mathbf{j}\mathbf{y}_2 \\ \mathbf{j}\mathbf{y}_1 \end{bmatrix}$

$$\begin{bmatrix} 0 & -jy_2 & jy_1 \\ 0 & -jy_1 & -jy_2 \\ -jy_1 & 0 & 0 \\ -jy_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} s_{110} \\ s_{12} \\ s_{22} \end{bmatrix}$$

$$y_e = jy_1$$

 $y_s = -jy_1$

$$S_{110} = \frac{z_2 - y_2 - y_1^2 z_2 - 2jz_2 y_1}{z_2 + y_2 + y_1^2 z_2}$$
$$S_{120} = S_{210} = \frac{-2j}{z_2 + y_2 + y_1^2 z_2}$$
$$S_{220} = \frac{z_2 - y_2 - y_1^2 z_2 + 2jz_2 y_1}{z_2 + y_2 + y_1^2 z_2}$$

$$S_{11e} = \frac{z_2 - y_2 - y_1 z_2 + 2j z_2 y_1}{z_2 + y_2 + y_1^2 z_2}$$

$$S_{12e} = S_{21e} = \frac{-2j}{z_2 + y_2 + y_1^2 z_2}$$

$$S_{22e} = \frac{z_2 - y_2 - y_1^2 z_2 - 2j z_2 y_1}{z_2 + y_2 + y_1^2 z_2}$$

 $x = x^2 z + 2iz x$

The 180° ring hybrid

Example

Design a ring (180°) hybrid working on 50 Ω , and plot the S parameters between 0.5 and 1.5 of the design frequency.

Figure 7.46 © John Wiley & Sons, Inc. All rights reserved.

The 180° ring hybrid

Figure 7.46 © John Wiley & Sons, Inc. All rights reserved.

The 180° ring hybrid

Figure 7.43 Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Coupled Line Coupler

Coupled Lines

Figure 3.25b © John Wiley & Sons, Inc. All rights reserved

- Even mode characterizes the common mode signal on the two lines
- Odd mode characterizes the differential mode signal between the two lines
- Each of the two modes is characterized by different characteristic impedances

c) ODD MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

b) EVEN MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

Coupled Lines

Figure 7.26 © John Wiley & Sons, Inc. All rights reserved.

Coupled Lines

Figure 7.28 © John Wiley & Sons, Inc. All rights reserved.

Matching in Coupled Line Coupler

Directivity and Coupling factor

modul par

modul impar

$$a_{1} = a_{1e} + a_{1o} = 1, a_{2} = a_{3} = a_{4} = 0$$

$$b_{1} = \frac{1}{2} (\Gamma_{e} + \Gamma_{o}) = 0 \Leftrightarrow$$

$$b_{2} = \frac{1}{2} (\Gamma_{e} - \Gamma_{o}) = \frac{jC\sin(\theta)}{\cos(\theta)\sqrt{1 - C^{2}} + j\sin(\theta)}$$

$$b_{3} = \frac{1}{2} (T_{e} - T_{o}) = 0$$

$$b_{4} = \frac{1}{2} (T_{e} + T_{o}) = \frac{\sqrt{1 - C^{2}}}{\cos(\theta)\sqrt{1 - C^{2}} + j\sin(\theta)}$$

$$C = \frac{Z_{ce} - Z_{co}}{Z_{ce} + Z_{co}}$$

$$\theta = \pi/2$$

$$[S] = \begin{bmatrix} 0 & C & 0 & -j\sqrt{1-C^2} \\ C & 0 & -j\sqrt{1-C^2} & 0 \\ 0 & -j\sqrt{1-C^2} & 0 & C \\ -j\sqrt{1-C^2} & 0 & C & 0 \end{bmatrix}$$

Coupled Line Coupler

Normalized even- and odd-mode characteristic impedance design data for edge-coupled striplines.

Even- and odd-mode characteristic impedance design data for coupled microstrip lines on a substrate with $\varepsilon_r = 10$.

Coupled Line Coupler

Coupled Line Coupler

Figure 7.34 © John Wiley & Sons, Inc. All rights reserved.

Example

Design a coupled line coupler with 20 dB coupling factor, using stripline technology, with a distance between ground planes of 0.158 cm and an electrical permittivity of 2.56, working on 50 Ω , at the design frequency of 3 GHz. Plot the coupling and directivity between 1 and 5 GHz.

Solution

Simulation

 In schematics: >Tools>LineCalc>Start
 for Microstrip lines >Tools>LineCalc>Send to Linecalc

LineCalc/untitled						- • ×
e Simulation	Options Help					
) 📁 🖬 🛊	D.					
Component						
Type MLIN	TD M	IN: TL25	•			
Substrate Parame	eters	•	Physical W	13.660	mil	
н	15.000	mil 🔹	L	386.030	mi	
Er	9.600	N/A *			N/A *	
Mur	1.000	N/A 👻				·/
Cond	5.96E+7	N/A *	Synthesize	Analy		Calculated Results
Hu	3.9e+034	mil 🔻				K_Eff = 6.276
т	1.400	mil 💌	Electrical			A_DB = 0.060
TopD 10000 4 N/A *		ZO	50.098900	Ohm 🔻	SkinDepth = 0.025	
Component Param	eters		E_Eff	294.984000	deg 🔻	
Freq	10.000	GHz 🔻			[N/A *]	
Wall 1	1.0E+30	mil 🔻			N/A *	
Wall2	1.0E+30	mil 💌			N/A *	

- 1. Define substrate (receive from schematic)
- 2. Insert frequency
- 3. Insert input data
 - Analyze: W,L → Zo,E or Ze,Zo,E / at f [GHz]
 - Synthesis: Zo,E → W,L / at f [GHz]

- Can be used for:
 - microstrip lines MLIN: W,L ⇔ Zo,E
 - microstrip coupled lines MCLIN: W,L,S ⇔ Ze,Zo,E

LineCalc/untit	led						×	Z=50 LineCalc/untitled						
File Simulation	n Options Help	í.						File Simulation	Options Help					
D 📂 🔚								🗋 🗂 🗂						
Component Type MLIN Substrate Par		MLIN: TL25		• Physical				Component Type MCLIN Substrate Parame		ICLIN: MCLIN_DEFAUL	Physical	Contraction		A 4
ID Alumina	a		•	N	13.660	mil 🔻		ID Alumina		-	W	9.924291	mil	
H Er	15.000 9.600	mil N/A		-	386.030	mil ▼ N/A ▼ N/A ▼		H Er	15.000 9.600	MI	S L	7.993661 121.714173	mi mi N/A mi	<u>↓ 1 2</u> <u>+</u> w++s+w+
Mur	1.000	N/A	* -					Mur	1.000	[N/A *]				
Cond	5.96E+7	N/A	-	Synthesize	Anal			Cond	5.96E+7	N/A 🔻	Synthesize	Ana		
Hu	3.9e+034	mil	-				Calculated Results K. Eff = 6.276	Hu	3.9e+034	mil 🔻				Calculated Results KE = 6.978
т	1.400	mil	• E	ectrical			A DB = 0.060	т	1.400	mil 🔻	Electrical			KC = 4.870
TopD	1 0000-4	NU/A	Ţ. z	D	50.098900	Ohm 🔻	SkinDepth = 0.025	TapD	1.000- 4		ZE	70.040	Ohm 🔻	AE_DB = 0.018
Component Pa	rameters		E	Eff	294.984000	deg 🔻		Component Param	eters		zo	39.370	Ohm 🔻	AO_DB = 0.032 SkinDepth = 0.025
Freq	10.000	GHz	•			N/A -		Freq	10.000	GHz 💌	ZO	52.511663	Ohm 🔻	Skilbeptil = 0.025
Wall 1	1.0E+30	mil	•			N/A -				N/A *	C_DB	-11.046865	N/A -	
Wall2	1.0E+30	mil	•			N/A *				N/A *	E_Eff	90.000	deg 🔻	
Values are consis	tent							Values are consistent						

LineCalc/untit	led					X
File Simulation	n Options Help					
Component Type MCLIN		CLIN: MCLIN_DEF	AULT 🔻			
Substrate Par		•	Physical W	9.924291	mi 🔻	
H	15.000	MI ▼	L	7.993661 121.714173	mil ▼ mil ▼	× 1 2 + w++s++w+
Mur Cond	1.000 5.96E+7	N/A *	Synthesize	Analy		Calculated Results
Hu T	3.9e+034 1.400	mil	Electrical			KE = 6.978 KO = 4.870
Component Par	rameters		ZE ZO	70.040 39.370	Ohm	AE_DB = 0.018 AO_DB = 0.032 SkinDepth = 0.025
Freq	10.000	GHz	Z0 C_DB	52.511663 -11.046865	Ohm	555
		N/A *	E_Eff	90.000	deg 🔻	

Values are consistent

Multisection Coupled Line Couplers

Example

Design a three sections coupled line coupler with 20 dB coupling factor, binomial characteristic (maximum flat), working on 50Ω , at the design frequency of 3 GHz. Plot the coupling and directivity between 1 and 5 GHz

Solution

$$\frac{d^{n}}{d\theta^{n}}C(\theta)\Big|_{\theta=\pi/2} = 0, n = 1,2$$

$$C = \left|\frac{V_{3}}{V_{1}}\right| = 2\sin\theta \Big[C_{1}\cos 2\theta + \frac{1}{2}C_{2}\Big] = C_{1}(\sin 3\theta - \sin \theta) + C_{2}\sin\theta$$

$$\frac{dC}{d\theta} = \Big[3C_{1}\cos 3\theta + (C_{2} - C_{1})\cos\theta\Big]\Big|_{\theta=\pi/2} = 0$$

$$Z_{0e}^{1} = Z_{0e}^{3} = 50\sqrt{\frac{1.0125}{0.9875}} = 50.63\Omega$$

$$\frac{d^{2}C}{d\theta^{2}} = \Big[-9C_{1}\sin 3\theta - (C_{2} - C_{1})\sin\theta\Big]\Big|_{\theta=\pi/2} = 10C_{1} - C_{2} = 0$$

$$Z_{0o}^{1} = Z_{0o}^{3} = 50\sqrt{\frac{0.9875}{1.0125}} = 49.38\Omega$$

$$\begin{cases} C_{2} - 2C_{1} = 0.1\\ 10C_{1} - C_{2} = 0 \end{cases}$$

$$Z_{0e}^{2} = 50\sqrt{\frac{1.125}{0.875}} = 56.69\Omega$$

$$\begin{cases} C_{1} = C_{3} = 0.0125\\ C_{2} = 0.125 \end{cases}$$

$$Z_{0o}^{2} = 50\sqrt{\frac{0.875}{1.125}} = 44.10\Omega$$

Simulare

The Lange Coupler

allows achieving coupling factors of 3 or 6 dB

Figure 7.38 © John Wiley & Sons, Inc. All rights reserved.

The Lange Coupler

Figure 7.39 © John Wiley & Sons, Inc. All rights reserved.

Circuit model

$$Z_{o4} = \frac{1}{vC_{o4}}$$

$$Z_0 = \sqrt{Z_{e4} Z_{o4}} = \sqrt{\frac{Z_{0e} Z_{0o} (Z_{0o} + Z_{0e})^2}{(3Z_{0o} + Z_{0e})(3Z_{0e} + Z_{0o})}}$$

$$C_{e4} = \frac{C_e (3C_e + C_o)}{C_e + C_o}$$
$$C_{o4} = \frac{C_o (3C_o + C_e)}{C_e + C_o}$$

$$Z_{e4} = Z_{0e} \frac{Z_{0e} + Z_{0o}}{3Z_{0o} + Z_{0e}}$$
$$Z_{o4} = Z_{0o} \frac{Z_{0e} + Z_{0o}}{3Z_{0e} + Z_{0o}}$$

$$C = \frac{Z_{e4} - Z_{o4}}{Z_{e4} + Z_{o4}} = \frac{3(Z_{0e}^2 - Z_{0o}^2)}{3(Z_{0e}^2 + Z_{0o}^2) + 2Z_{0e}Z_{0o}}$$

The Lange Coupler

Directional Couplers

Laboratory no. 2

Directional Coupler

The cuadrature (90°) hybrid

Quadrature coupler

The 180° ring hybrid (rat-race)

Figure 7.46 © John Wiley & Sons, Inc. All rights reserved.

Ring coupler

Coupled Line Coupler

Figure 7.34 © John Wiley & Sons, Inc. All rights reserved.

Coupled line coupler

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro