Lecture 5
2022/2023
Microwave Devices and Circuits
for Radiocommunications

2022/2023

2C/1L, MDCR

- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
- Tuesday 12-14, Online, P8
- E-50\% final grade
- problems + (2p atten. lect.) + (3 tests) + (bonus activity)
- first test L1: 21-28.02.2023 (t2 and t3 not announced, lecture)
" 3att.=+0.5p
- all materials/equipments authorized

2022/2023

- Laboratory - associate professor Radu Damian
- Tuesday 08-12, II. 13 / (08:10)
- L-25\% final grade
- ADS, 4 sessions
- Attendance + personal results
- P - 25\% final grade
- ADS, 3 sessions (-1? 21.02.2022)
" personal homework

Materials

- http://rf-opto.etti.tuiasi.ro

© Laboratorul de Microunde si Op: $\times+$
 $\leftarrow \rightarrow$ C (i) Not secure | rf-opto.etti.tuiasi.ro/microwave_cd.php?chg_lang=0
 Main Courses Master Staff Research Students Admin
 Microwave CD Optical Communications Optoelectronics Internet Antennas Practica Networks Educational soffware

Microwave Devices and Circuits for Radiocommunications (English)
Course: MDCR (2017-2018)
Course Coordinator: Assoc.P. Dr. Radu-Florin Damian
Code: EDOS412T
Discipline Type: DOS; Alternative, Specialty
Enrollment Year: 4, Sem. 7
Activities
Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:
Evaluation
Type: Examen
A: 50%, (Test/Colloquium)
B: 25\%, (Seminary/Laboratory/Project Activity)
D: 25%, (Homework/Specialty papers)
*林English I D Romana I

Grades

Aggregate Results
Attendance
Course
Laboratory.
Lists
Bonus-uri acumulate (final). Studenti care nu pot intra in examen
Materials
Course Slides
MDCR Lecture 1 (pdf, 5.43 MB , en, ma
MDCR Lecture 2 (pdf, 3.67 MB , en,
MDCR Lecture 3 (pdf, 4.76 MB , en
MDCR Lecture 4 (pdf, 5.58 MB, en, 2)

Online Exams

In order to participate at online exams you must get ready following

Materials

- RF-OPTO
- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011
- 1 exam problem \leftarrow Pozar
- Photos
- sent by email/online exam
- used at lectures/laboratory

Photos

Date:

Grupa	$5304(2015 / 2016)$
Specializarea	Tehnologii si sisteme de telecomunicatii

Marca 5184

Date:
Grupa $\quad 5304$ (2015/2016)

Specializarea Tehnologii si sisteme de telecomunicatii Marca 5184

Date:
Grupa $\quad 5304$ (2015/2016)
Specializarea Tehnologii si sisteme de telecomunicatii
Marca 5244

Trimite email acestui student | Adauga acest student la lista (0)

Acceseaza ca acest student
Note obtinute
Finantare Buget
Bursa Bursa de Studii

Profile photo

- Profile photo - online "exam"

Examene online: 2020/2021
Disciplina: MDC (Microwave Devices and Circuits (Engleza))
Pas 3

Nr.	Titlu	Start	Stop	Text
1	Profile photos	$03 / 03 / 2021 ; 10: 00$	$08 / 04 / 2021 ; 08: 00$	Online "exam" created f.

2 Mini Test 1 (lecture 2) 03/03/2021; 15:35 03/03/2021; 15:50 The current test consis ..
Grupa $\quad 5304$ (2015/2016)

Specializarea Tehnologii si sisteme de telecomunicatii
Marca
5184

Access

Not customized

Acceseaza ca acest student

Nume

Note obtimate

Disciplina	Tip	Data	Descriere	Nota	Puncte	Obs.
TW	Tehnologii Web					
	N	$17 / 01 / 2014$	Nota finala	10	-	
	A	$17 / 01 / 2014$	Colocviu Tehnologii Web 2013/2014	10	7.55	
	B	$17 / 01 / 2014$	Laborator Tehnologii Web 2013/2014	9	-	
	D	$17 / 01 / 2014$	Tema Tehnologii Web 2013/2014	9	-	

Online

- access to online exams requires the password received by email

Online

- access email/password

Main	Courses	Master	Staff	Resear
Grades	Student List	Exams	Photos	
POPESCU GOPO ION				
Fotografia nu exista		Date:		
		Grupa	5700 (2019/2020)	
		Specializarea	Inginerie electronica sitelec	
		Marca	7000000	

Password

received by email

Important message from RF-OPTO

Inbox x

Radu-Florin Damian
to me, POPESCU -
$\overline{\text { }}_{\text {A }}$ Romanian * $>$ English * Translate message

Laboratorul de Microunde si Optoelectronica
Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei
Universitatea Tehnica "Gh. Asachi" las

In atentia: POPESCU GOPO ION
Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare
Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation
Save this message in a safe place for later use

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation.
Save this message in a safe place for later use

Online exam manual

- The online exam app used for:
=-lectures (attendance)
- laboratory
- project
-examinations

Materials

Other data

Manual examen on-line ($p d f, 2.65$ yB, ro, II) Simulare Examen (video) (mp4, 65) 12 MB, ro, II)

Microwave Devices and Circuits (Enqlis

Examen online

- always against a timetable
- long period (lecture attendance/laboratory results)
"-short period (tests: 15min, exam: 2h)
-

Announcement

This is a "fake" exam, introduced to familiarize you with the server interface and to perform the necessary actions during an exam: thesis scan, selfie, use email for cc

Server Time

All exame aro hased on the server's time zone (it may be different from local time). For reference time on the server is now:

Online results submission

many numerical values／files

Sixam	net		Reminem																		
					${ }^{\frac{85}{585} 5}$	14833	15588	20212	18935	1809	3029	1 15．19	79.9	${ }^{37}$	689						
溉		$\frac{5}{50}$		$\frac{85}{\frac{85}{522} .}$		2587	1355	${ }^{3,464}$	3579	5558	22212	10.6	。	。		。					
		$\underbrace{\substack{\text { cise }}}_{\text {cose }}$					－	\bigcirc	。	－	\bigcirc	\bigcirc		－							
既						s0	so	50	50	50	50	50									
						${ }_{18602}$	150.5	${ }_{1828} 18$	1335	92.12	121.6	14.48		35.19							
	$\frac{85}{\substack{\text { sicis．} \\ 2020}}$	$\xrightarrow{\frac{8}{\text { che }} \text { S．}}$			${ }_{\text {cosem }}^{\text {che }}$	1122	80． 8	202	1008	135.	1837	157.6									
										${ }^{7271}$				36.1							
							1225		${ }^{323}$	5436											
													2.05	33.6							

Online results submission

- many numerical values

Online results submission

Grade = Quality of the work +

 + Quality of the submissionTEM transmission lines

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

The lossless line

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \cdot \beta \cdot z}+V_{0}^{-} e^{j \cdot \beta \cdot z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \cdot \beta \cdot z}-\frac{V_{0}^{-}}{Z_{0}} e^{j \cdot \beta \cdot z} \\
& Z_{L}=\frac{V(0)}{I(0)} \quad Z_{L}=\frac{V_{0}^{+}+V_{0}^{-}}{V_{0}^{+}-V_{0}^{-}} \cdot Z_{0}
\end{aligned}
$$

- voltage reflection coefficient
$\Gamma=\frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}$
- Z_{o} real

The lossless line

$$
V(z)=V_{0}^{+} \cdot\left(e^{-j \cdot \beta \cdot z}+\Gamma \cdot e^{j \cdot \beta \cdot z}\right) \quad I(z)=\frac{V_{0}^{+}}{Z_{0}} \cdot\left(e^{-j \cdot \beta \cdot z}-\Gamma \cdot e^{j \cdot \beta \cdot z}\right)
$$

- time-average Power flow along the line
$P_{\text {avg }}=\frac{1}{2} \cdot \operatorname{Re}\left\{V(z) \cdot I(z)^{*}\right\}=\frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \operatorname{Re}\{1-\Gamma^{*} \cdot \underbrace{e^{-2 j \cdot \beta \cdot z}+\Gamma \cdot e^{2 j \cdot \beta \cdot z}}_{\left(z-z^{*}\right)=\operatorname{Im}}-|\Gamma|^{2}\}$
- Total power delivered to the load = Incident power - "Reflected" power
- Return "Loss" [dB] \quad RL $=-20 \cdot \log |\Gamma| \quad[\mathrm{dB}]$

The lossless line

- input impedance of a length \boldsymbol{l} of transmission line with characteristic impedance \boldsymbol{Z}_{0}, loaded with an arbitrary impedance \boldsymbol{Z}_{L}

General theory
Microwave Network Analysis

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

Network Analysis

- We try to separate a complex circuit into individual blocks
- These are analyzed separately (decoupled from the rest of the circuit) and are characterized only by the port level signals (black box)
- Network-level analysis allows you to put together individual block results and get a total result for the entire circuit

Network Analysis

- Each matrix is best suited for a particular mode of port excitation (V, I)
- matrix H in common emitter connection for $\mathrm{TB}: \mathrm{I}_{\mathrm{B}}, \mathrm{V}_{\mathrm{CE}}$
- matrices provide the associated quantities depending on the "attack" ones
- Traditional notation of Z, Y, G, H parameters is in lowercase (z, y, g, h)
- In microwave analysis we prefer the notation in uppercase to avoid confusion with the normalized parameters

$$
\begin{gathered}
z=\frac{Z}{Z_{0}} \quad y=\frac{Y}{Y_{0}}=\frac{1 / Z}{1 / Z_{0}}=\frac{Z_{0}}{Z}=Z_{0} \cdot Y \\
z_{11}=\frac{Z_{11}}{Z_{0}} \quad y_{11}=\frac{Y_{11}}{Y_{0}}=Z_{0} \cdot Y_{11}
\end{gathered}
$$

ABCD (transmission) matrix

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]=\frac{1}{A \cdot D-B \cdot C} \cdot\left[\begin{array}{cc}
D & -B \\
-C & A
\end{array}\right] \cdot\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]} \\
& A=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0} \quad B=\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0} \quad C=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0} \quad D=\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}=0}
\end{aligned}
$$

ABCD (transmission) matrix

This 2X2 matrix characterizes the "input"/"output" relation

- Allows easy chaining of multiple two-ports

Library of ABCD matrices

TABLE 4.1 ABCD Parameters of Some Useful Two-Port Circuits

Table 4.1
© John Wiley \& Sons, Inc. All rights reserved.

Scattering matrix - S

- Scattering parameters

- $V_{2}^{+}=0$ meaning: port 2 is terminated in matched load to avoid reflections towards the port

$$
\Gamma_{2}=0 \rightarrow V_{2}^{+}=0
$$

Scattering matrix - S

$$
\begin{aligned}
& {\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]} \\
& S_{11}=\left.\frac{b_{1}}{a_{1}}\right|_{a_{2}=0} \quad S_{22}=\left.\frac{b_{2}}{a_{2}}\right|_{a_{1}=0}
\end{aligned}
$$

- S_{11} and S_{22} are reflection coefficients at ports 1 and 2 when the other port is matched

Scattering matrix - S

- S_{21} si S_{12} are signal amplitude gain when the other port is matched

Scattering matrix - S

- a,b
" information about signal power AND signal phase
- $S_{i j}$
- network effect (gain) over signal power including phase information

Measuring S parameters - VNA

- Vector Network Analyzer

Figure 4.7

Even/Odd Mode Analysis

Even/Odd Mode Analysis

- useful method, necessary even for multiple ports
- example, resistors, two port circuit 100Ω

Even/Odd Mode Analysis

- assume we want to compute Y_{11}
- $E_{2}=0$

$$
Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}
$$

$$
\begin{aligned}
& R_{\text {ech }}=100 \Omega \|(50 \Omega+25 \Omega \| 50 \Omega)= \\
& =100 \Omega\|(50 \Omega+16.67 \Omega)=100 \Omega\| 66.67 \Omega=40 \Omega \quad Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}=0.025 S
\end{aligned}
$$

Even/Odd Mode Analysis

- Even/Odd mode analysis benefit from the existence of symmetry planes in the circuit
" existing or
- created (forced)
| symmetry plane

Even/Odd Mode Analysis

- when exciting the ports with symmetric/anti-symmetric sources the symmetry planes are transformed into:
- open circuit
- virtual ground

Even/Odd Mode Analysis

- the combination of any two sources is equivalent for linear circuits with the superposition of:
- a symmetric source and

Even/Odd Mode Analysis

- In linear circuits the superposition principle is always true
- the response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually
Response (Source1 + Sourcez) $=$ = Response (Source1) + Response (Source2)

Response(ODD + EVEN) = Response (ODD) + Response (EVEN)

We can benefit from existing symmetries !!

Even/Odd Mode Analysis

Even/Odd Mode Analysis

- Even/Odd mode analysis

EVEN \rightarrow symmetry plane open circuit

$R_{e c h}^{o}=50 \Omega| | 50 \Omega=25 \Omega$
$I_{1}^{o}=\frac{E^{o}}{R_{\text {ech }}^{o}}=\frac{E_{1} / 2}{25 \Omega}=\frac{E_{1}}{50 \Omega}$
ODD \rightarrow symmetry plane virtual ground

Even/Odd Mode Analysis

- superposition principle

Even/Odd Mode Analysis

- In linear circuits we can use the superposition principle
- advantages
" reduction of the circuit complexity
- decrease of the number of ports (main advantage)

Response (ODD + EVEN) = Response (ODD) + Response (EVEN)

We can benefit from existing symmetries !!

Power dividers and directional couplers

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers

Introduction

Power dividers and couplers

- Desired functionality:
- division
- combining
- of signal power

(a)

(b)

Balanced amplifiers

Matching

- feedback amplifier

Three-Port Networks

- also known as T-Junctions
- characterized by a 3x3 S matrix

$$
[S]=\left[\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right]
$$

- the device is reciprocal if it does not contain:
- anisotropic materials (usually ferrites)
- active circuits
- to avoid power loss, we would like to have a network that is:
- lossless, and
- matched at all ports
" to avoid reflection power "loss"

Three-Port Networks

- reciprocal

$$
\begin{aligned}
& {[S]=[S]^{t} \quad S_{i j}=S_{j i}, \forall j \neq i} \\
& S_{12}=S_{21}, S_{13}=S_{31}, S_{23}=S_{32}
\end{aligned}
$$

matched at all ports

$$
S_{i i}=0, \forall i \quad S_{11}=0, S_{22}=0, S_{33}=0
$$

then the S matrix is:

$$
[S]=\left[\begin{array}{ccc}
0 & S_{12} & S_{13} \\
S_{12} & 0 & S_{23} \\
S_{13} & S_{23} & 0
\end{array}\right]
$$

Three-Port Networks

- reciprocal, matched at all ports, S matrix:

$$
[S]=\left[\begin{array}{ccc}
0 & S_{12} & S_{13} \\
S_{12} & 0 & S_{23} \\
S_{13} & S_{23} & 0
\end{array}\right]
$$

- lossless network
- all the power injected in one port will be found exiting the network on all ports

$$
\begin{aligned}
{[S]^{*} \cdot[S]^{t}=} & {[1] \quad \sum_{k=1}^{N} S_{k i} \cdot S_{k j}^{*}=\delta_{i j}, \forall i, j } \\
& \sum_{k=1}^{N} S_{k i} \cdot \stackrel{S}{k i}_{* *}^{*} \quad \sum_{k=1}^{N} S_{k i}^{*} \cdot S_{k j}^{*}=0, \forall i \neq j
\end{aligned}
$$

Three-Port Networks

- lossless network

$$
[S]=\left[\begin{array}{ccc}
0 & S_{12} & S_{13} \\
S_{12} & 0 & S_{23} \\
S_{13} & S_{23} & 0
\end{array}\right] \quad \begin{aligned}
& \sum_{k=1}^{N} S_{k i} \cdot S_{k i}^{*}=1 \\
& \sum_{k=1}^{N} S_{k i} \cdot S_{k j}^{*}=0, \forall i \neq j
\end{aligned}
$$

- 6 equations / 3 unknowns

$$
\begin{array}{cc}
\left|S_{12}\right|^{2}+\left|S_{13}\right|^{2}=1 & S_{13}^{*} S_{23}=0 \\
\left|S_{12}\right|^{2}+\left|S_{23}\right|^{2}=1 & S_{12}^{*} S_{13}=0 \\
\left|S_{13}\right|^{2}+\left|S_{23}\right|^{2}=1 & S_{23}^{*} S_{12}=0 \\
\text { - no solution is possible }
\end{array}
$$

Three-Port Networks

$$
[S]=\left[\begin{array}{ccc}
0 & S_{12} & S_{13} \\
S_{12} & 0 & S_{23} \\
S_{13} & S_{23} & 0
\end{array}\right]
$$

- 6 equations / 3 unknowns
- no solution is possible
- A three-port network cannot be simultaneously:
- reciprocal
- lossless
- matched at all ports
- If any one of these three conditions is relaxed, then a physically realizable device is possible

Nonreciprocal Three-Port Networks

- usually containing anisotropic materials, ferrites
- nonreciprocal, but matched at all ports and
lossless $S_{i j} \neq S_{j i}$
- S matrix

$$
[s]=\left[\begin{array}{ccc}
0 & S_{12} & S_{13} \\
S_{21} & 0 & S_{23} \\
S_{31} & S_{32} & 0
\end{array}\right]
$$

- 6 equations / 6 unknowns

$$
\begin{array}{ll}
\left|S_{12}\right|^{2}+\left|S_{13}\right|^{2}=1 & S_{31}^{*} S_{32}=0 \\
\left|S_{21}\right|^{2}+\left|S_{23}\right|^{2}=1 & S_{21}^{*} S_{23}=0 \\
\left|S_{31}\right|^{2}+\left|S_{32}\right|^{2}=1 & S_{12}^{*} S_{13}=0
\end{array}
$$

Nonreciprocal Three-Port Networks

- two possible solutions
- circulators
- clockwise circulation

$$
\begin{aligned}
& S_{12}=S_{23}=S_{31}=0 \\
& \left|S_{21}\right|=\left|S_{32}\right|=\left|S_{13}\right|=1
\end{aligned}
$$

$$
[S]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- counterclockwise circulation

$$
\begin{aligned}
& S_{21}=S_{32}=S_{13}=0 \\
& \left|S_{12}\right|=\left|S_{23}\right|=\left|S_{31}\right|=1
\end{aligned}
$$

$$
[S]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Nonreciprocal Three-Port Networks

- circulator often found in duplexer

Mismatched Three-Port Networks

- A lossless and reciprocal three-port network can be matched only on two ports, eg. 1 and 2:

$$
[S]=\left[\begin{array}{ccc}
0 & S_{12} & S_{13} \\
S_{12} & 0 & S_{23} \\
S_{13} & S_{23} & S_{13}^{*} S_{23}=0 \\
S_{13}=S_{23}=0 & S_{12}^{*} S_{13}+S_{23}^{*} S_{33}=0 \\
S_{23}^{*} S_{12}+S_{33}^{*} S_{13}=0 \\
\left|S_{12}\right|^{2}+\left|S_{13}\right|^{2}=1 \\
\left|S_{13}\right|=\left|S_{23}\right| & \left|S_{12}\right|^{2}+\left|S_{23}\right|^{2}=1 \\
\left|S_{13}\right|^{2}+\left|S_{23}\right|^{2}+\left|S_{33}\right|^{2}=1
\end{array}\right.
$$

$\left|S_{12}\right|=\left|S_{33}\right|=1$

Mismatched Three-Port Networks

- A lossless and reciprocal three-port network
\([S]=\left[\begin{array}{ccc}0 \& S_{12} \& S_{13}

S_{12} \& 0 \& S_{23}

S_{13} \& S_{23} \& S_{33}\end{array}\right] \quad\)\begin{tabular}{c}
$S_{13}=S_{23}=0$

$\mid S]=\left[\begin{array}{ccc}0 & e_{12}^{j \theta}\left|=\left|S_{33}\right|=1\right. \\
e^{j \theta} & 0 & 0 \\
0 & 0 & e^{j \phi}\end{array}\right]$

$S_{12}=e^{j \theta}$

$S_{33}=e^{j \varphi}$

$S_{21}=e^{j \theta}$
\end{tabular}

A lossless and reciprocal threeport network degenerates into two separate components:

- a matched two-port line
- a totally mismatched oneport:

Four-Port Networks

- characterized by a 4×4 S matrix

$$
[S]=\left[\begin{array}{llll}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right]
$$

- the device is reciprocal if it does not contain:
- anisotropic materials (usually ferrites)
- active circuits
- to avoid power loss, we would like to have a network that is:
- lossless, and
- matched at all ports
" to avoid reflection power "loss"

Four-Port Networks

- reciprocal

$$
\begin{aligned}
& {[S]=[S]^{t} \quad S_{i j}=S_{j i}, \forall j \neq i} \\
& S_{12}=S_{21}, S_{13}=S_{31}, S_{23}=S_{32}
\end{aligned}
$$

- matched at all ports

$$
S_{i i}=0, \forall i \quad S_{11}=0, S_{22}=0, S_{33}=0, S_{44}=0
$$

then the S matrix is:

$$
[S]=\left[\begin{array}{cccc}
0 & S_{12} & S_{13} & S_{14} \\
S_{12} & 0 & S_{23} & S_{24} \\
S_{13} & S_{23} & 0 & S_{34} \\
S_{14} & S_{24} & S_{34} & 0
\end{array}\right]
$$

Four-Port Networks

- reciprocal, matched at all ports, S matrix:

$$
[S]=\left[\begin{array}{cccc}
0 & S_{12} & S_{13} & S_{14} \\
S_{12} & 0 & S_{23} & S_{24} \\
S_{13} & S_{23} & 0 & S_{34} \\
S_{14} & S_{24} & S_{34} & 0
\end{array}\right]
$$

- lossless network
- all the power injected in one port will be found exiting the network on all ports

$$
\begin{aligned}
& {[S]^{*} \cdot[S]^{t}=[1] \quad \sum_{k=1}^{N} S_{k i} \cdot S_{k j}^{*}=\delta_{i j}, \forall i, j} \\
& \sum_{k=1}^{N} S_{k i} \cdot S_{k i}^{*}=1 \quad \sum_{k=1}^{N} S_{k i} \cdot S_{k j}^{*}=0, \forall i \neq j
\end{aligned}
$$

Four-Port Networks

$$
\begin{array}{ll}
S_{13}^{*} \cdot S_{23}+S_{14}^{*} \cdot S_{24}=0 \quad / \cdot S_{24}^{*} \\
\frac{S_{14}^{*} \cdot S_{13}+S_{24}^{*} \cdot S_{23}=0 \quad / \cdot S_{13}^{*}}{S_{14}^{*} \cdot\left(\left|S_{13}\right|^{2}-\left|S_{24}\right|^{2}\right)=0}
\end{array}
$$

$$
\begin{aligned}
& S_{12}^{*} \cdot S_{23}+S_{14}^{*} \cdot S_{34}=0 \quad / \cdot S_{12} \\
& \frac{S_{14}^{*} \cdot S_{12}+S_{34}^{*} \cdot S_{23}=0 \quad / \cdot S_{34}^{*}}{S_{23} \cdot\left(\left|S_{12}\right|^{2}-\left|S_{34}\right|^{2}\right)=0}
\end{aligned}
$$

- one solution: $S_{14}=S_{23}=0$

$$
\left|S_{12}\right|^{2}+\left|S_{24}\right|^{2}=1 \longrightarrow\left|S_{13}\right|=\left|S_{24}\right|
$$

$$
[S]=\left[\begin{array}{cccc}
0 & S_{12} & S_{13} & 0 \\
S_{12} & 0 & 0 & S_{24} \\
S_{13} & 0 & 0 & S_{34} \\
0 & S_{24} & S_{34} & 0
\end{array}\right]
$$

$$
\left|S_{13}\right|^{2}+\left|S_{34}\right|^{2}=1
$$

$$
\left|S_{12}\right|=\left|S_{34}\right|
$$

Four-Port Networks

$$
[S]=\left[\begin{array}{cccc}
0 & S_{12} & S_{13} & 0 \\
S_{12} & 0 & 0 & S_{24} \\
S_{0} & 0 & 0 & S
\end{array}\right] \quad\left|S_{12}\right|=\left|S_{34}\right|=\alpha \quad\left|S_{13}\right|=\left|S_{24}\right|=\beta
$$

β-voltage coupling coefficient

- We can choose the phase reference

$$
\begin{aligned}
S_{12}=S_{34}=\alpha \quad S_{13}=\beta \cdot e^{j \theta} & S_{24}=\beta \cdot e^{j \phi} \\
S_{12}^{*} \cdot S_{13}+S_{24}^{*} \cdot S_{34}=0 & \rightarrow \theta+\phi=\pi \pm 2 \cdot n \cdot \pi \\
\left|S_{12}\right|^{2}+\left|S_{24}\right|^{2}=1 & \rightarrow \alpha^{2}+\beta^{2}=1
\end{aligned}
$$

- The other possible solution for previous equations offer either essentially the same result (with a different phase reference) or the degenerate case (2 separate two port networks side by side)

$$
S_{14}^{*} \cdot\left(\left|S_{13}\right|^{2}-\left|S_{24}\right|^{2}\right)=0 \quad S_{23} \cdot\left(\left|S_{12}\right|^{2}-\left|S_{34}\right|^{2}\right)=0
$$

Four-Port Networks

- A four-port network simultaneously:
- matched at all ports
- reciprocal
- Iossless
- is always directional
- the signal power injected into one port is transmitted only towards two of the other three ports

$$
[S]=\left[\begin{array}{cccc}
0 & \alpha & \beta \cdot e^{j \theta} & 0 \\
\alpha & 0 & 0 & \beta \cdot e^{j \phi} \\
\beta \cdot e^{j \theta} & 0 & 0 & \alpha \\
0 & \beta \cdot e^{j \phi} & \alpha & 0
\end{array}\right]
$$

Four-Port Networks

- two particular choices commonly occur in practice
- A Symmetric Coupler (90°) $\quad \theta=\phi=\pi / 2$

$$
[S]=\left[\begin{array}{cccc}
0 & \alpha & j \beta & 0 \\
\alpha & 0 & 0 & j \beta \\
j \beta & 0 & 0 & \alpha \\
0 & j \beta & \alpha & 0
\end{array}\right]
$$

- An Antisymmetric Coupler (180°) $\quad \theta=0, \phi=\pi$

$$
[S]=\left[\begin{array}{cccc}
0 & \alpha & \beta & 0 \\
\alpha & 0 & 0 & -\beta \\
\beta & 0 & 0 & \alpha \\
0 & -\beta & \alpha & 0
\end{array}\right]
$$

Directional Coupler

Coupling

Balanced amplifiers

Power dividers

Three-Port Networks

$$
[S]=\left[\begin{array}{ccc}
0 & S_{12} & S_{13} \\
S_{12} & 0 & S_{23} \\
S_{13} & S_{23} & 0
\end{array}\right]
$$

- 6 equations / 3 unknowns
- no solution is possible
- A three-port network cannot be simultaneously:
- reciprocal
- lossless
- matched at all ports
- If any one of these three conditions is relaxed, then a physically realizable device is possible

Power division of the T-junction

- consists in splitting an input line into two separate output lines
- available in various technologies for the lines

Power division of the T-junction

- if the lines are lossless, the network is reciprocal, so it cannot be matched at all ports simultaneously

- there may be fringing fields and higher order modes associated with the discontinuity at such a junction
- the stored energy can be accounted for by a lumped susceptance: B
- Designing the power divider targets matching to the input line $Z_{\text {。 }}$
- outputs (unmatched, Z_{1} and Z_{2}) can be, if needed, matched to $Z_{0}(\lambda / 4$, binomial, Chebyshev)

Power division of the T-junction

$$
Y_{i n}=j \cdot B+\frac{1}{Z_{1}}+\frac{1}{Z_{2}}=\frac{1}{Z_{0}}
$$

- If the transmission lines are assumed to be lossless, then the characteristic impedances are real
- the matching condition can be met only if $\mathrm{B} \cong 0$ thus the matching condition is:

$$
\frac{1}{Z_{1}}+\frac{1}{Z_{2}}=\frac{1}{Z_{0}}
$$

In practice, if \mathbf{B} is not negligible, some type of discontinuity compensation or a reactive tuning element can usually be used to cancel this susceptance, at least over a narrow frequency range.

Power division of the T-junction

- if V_{0} is the voltage at the junction, we can compute how the input power is divided between the two output lines

Power division of the T-junction

- S matrix
- lossless (unitary matrix)
- reciprocal (symmetrical matrix)
- input port is matched $S_{11}=0$

Power division of the T-junction

Power division of the T-junction

- 3dB divider
- equal splitting of the power between the two outputs
- $Z_{1}=Z_{2}=2 \cdot Z_{0}, \alpha=1$

$$
\begin{aligned}
& \qquad S]=\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right] \\
& \text { If we add } \lambda / 4 \text { transformers to match }
\end{aligned}
$$ outputs to $\mathrm{Z}_{\mathrm{o}} \mathrm{S}$ matrix:

$$
[S]=\left[\begin{array}{ccc}
0 & -\frac{j}{\sqrt{2}} & -\frac{j}{\sqrt{2}} \\
-\frac{j}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\
-\frac{j}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

Example

- Design a lossless T-junction divider with a 30Ω source impedance to give a 3:1 power split. Design quarter-wave matching transformers to convert the impedances of the output lines to 30Ω. (Pozar problem)

$$
\begin{gathered}
P_{\text {in }}=\frac{1}{2} \cdot \frac{V_{0}^{2}}{Z_{0}} \quad\left\{\begin{array} { l }
{ P _ { 1 } + P _ { 2 } = P _ { i n } } \\
{ P _ { 1 } : P _ { 2 } = 3 : 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
P_{1}=\frac{1}{4} \cdot P_{\text {in }} \\
P_{2}=\frac{3}{4} \cdot P_{\text {in }}
\end{array}\right.\right. \\
P_{1}=\frac{1}{2} \cdot \frac{V_{0}^{2}}{Z_{1}}=\frac{1}{4} \cdot P_{\text {in }} \quad Z_{1}=4 \cdot Z_{0}=120 \Omega \quad \text { Input match check }
\end{gathered} \quad \begin{aligned}
& Z_{\text {in }}=\frac{1}{2} \cdot \frac{V_{0}^{2}}{Z_{2}}=\frac{3}{4} \cdot P_{\text {in }} \quad Z_{2}=4 \cdot Z_{0} / 3=40 \Omega \quad 120 \Omega=30 \Omega
\end{aligned}
$$

quarter-wave transformers $Z_{c}^{i}=\sqrt{Z_{i} \cdot Z_{L}}$

$$
Z_{c}^{1}=\sqrt{Z_{1} \cdot Z_{L}}=\sqrt{120 \Omega \cdot 30 \Omega}=60 \Omega \quad Z_{c}^{2}=\sqrt{Z_{2} \cdot Z_{L}}=\sqrt{40 \Omega \cdot 30 \Omega}=34.64 \Omega
$$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
- reciprocal
- matched at all ports

The impedance Z, seen looking into the Zo/3 resistor followed by a terminated output line:

$$
Z=\frac{Z_{0}}{3}+Z_{0}=\frac{4 Z_{0}}{3}
$$

The input line will be terminated with a Zo/3 resistor in series with two such lines Z in parallel

$$
Z_{i n}=\frac{Z_{0}}{3}+\frac{1}{2} \cdot \frac{4 Z_{0}}{3}=Z_{0}
$$

so it will be matched: $S_{11}=0$
from symmetry: $S_{11}=S_{22}=S_{33}=0$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
- reciprocal
- matched at all ports $S_{11}=S_{22}=S_{33}=0$

Resistive Divider

If a three-port divider contains lossy components, it can be made to be :

- reciprocal (S matrix is symmetrical) $S_{21}=S_{31}=S_{23}=\frac{1}{2}$
- matched at all ports $S_{11}=S_{22}=S_{33}=0$

S matrix: $\quad[S]=\frac{1}{2} \cdot\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
Powers: $\quad P_{i n}=\frac{1}{2} \cdot \frac{V_{1}^{2}}{Z_{0}}$
$P_{2}=P_{3}=\frac{1}{2} \cdot \frac{\left(1 / 2 V_{1}\right)^{2}}{Z_{0}}=\frac{1}{8} \cdot \frac{V_{1}^{2}}{Z_{0}}=\frac{1}{4} \cdot P_{\text {in }}$
Half of the supplied power is dissipated in the 3 resistors. The output powers are 6 dB below the input power level

The Wilkinson power divider

- Previous power dividers suffer from a major drawback, there is not isolation between the two output ports $\quad S_{23}=S_{32} \neq 0$
" this requirement is important in some applications
- The Wilkinson power divider solves this problem
- it also has the useful property of appearing lossless when the output ports are matched
- only reflected power from the output ports is dissipated

The Wilkinson power divider

- one input line
- two $\lambda / 4$ transformers
- one resistor between the output lines

(a)

(b)

Even/Odd Mode Analysis

- In linear circuits we can use the superposition principle
- advantages
" reduction of the circuit complexity
- decrease of the number of ports (main advantage)

Response (ODD + EVEN) = Response (ODD) + Response (EVEN)

We can benefit from existing symmetries !!

The Wilkinson power divider

the circuit in normalized and symmetric form

The Wilkinson power divider

- Even/Odd Mode Analysis

(a)

(b)

The Wilkinson power divider

- even mode, symmetry plane is open circuit

Port 2
 $\begin{aligned} & \text { looking into port 2, } \lambda / 4 \\ & \text { transformer with 2 load }\end{aligned} \quad Z_{\text {in } 2}^{e}=\frac{Z^{2}}{2} \quad$ if $Z=\sqrt{2} \quad$ port 2 is matched $\quad Z_{\text {in } 2}^{e}=1$

$$
\begin{aligned}
& \qquad V(x)=V^{+} \cdot\left(e^{-j \beta \cdot x}+\Gamma \cdot e^{j \beta \cdot x}\right)^{2} \begin{array}{l}
\mathrm{x}=\mathrm{o} \text { at port 1 } \\
\mathrm{x}=-\lambda / 4 \text { at port 2 }
\end{array} \\
& \qquad V_{2}^{e}=V(-\lambda / 4)=j V^{+} \cdot(1-\Gamma)=V_{0} V_{1}^{e}=V(0)=V^{+} \cdot(1+\Gamma)=j V_{0} \cdot \frac{\Gamma+1}{\Gamma-1} \\
& \qquad \begin{array}{l}
Z_{\text {in2 } 2}^{e}=1
\end{array} \\
& \text { reseflection coefficient seen at port 1 looking toward the } \\
& \text { resistor of normalized value 2 from the transformer } Z=\sqrt{2} \quad \Gamma=\frac{2-\sqrt{2}}{2+\sqrt{2}} \quad V_{1}^{e}=-j V_{0} \sqrt{2}
\end{aligned}
$$

The Wilkinson power divider

- odd mode, symmetry plane is grounded

looking from port 2 the $\lambda / 4$ line is shortcircuited, impedance seen from port 2 is ∞
$Z_{i n 2}^{o}=r / 2$ if $r=2$ port 2 is matched
$Z_{\text {in } 2}^{o}=1 \hookrightarrow V_{2}^{o}=V_{0}$
$V_{1}^{o}=0 \quad$ in the odd mode all the power is dissipated in the $r / 2$ resistor

The Wilkinson power divider

- input impedance in port 1

two $\lambda / 4$ transformers with load 1 in parallel

$$
Z_{i n 1}=\frac{1}{2}(\sqrt{2})^{2}=1
$$

The Wilkinson power divider

- S parameters

$$
\begin{aligned}
& Z_{i n 1}=\frac{1}{2}(\sqrt{2})^{2}=1 \quad S_{11}=0 \\
& Z_{i n 2}^{e}=1 \quad Z_{i n 2}^{o}=1 \quad \text { and } \quad Z_{i n 3}^{e}=1 \quad Z_{i n 3}^{o}=1 \quad S_{22}=S_{33}=0 \\
& S_{12}=S_{21}=\frac{V_{1}^{e}+V_{1}^{o}}{V_{2}^{e}+V_{2}^{o}}=-\frac{j}{\sqrt{2}} \\
& \text { and } \quad S_{13}=S_{31}=-\frac{j}{\sqrt{2}}
\end{aligned}
$$

$$
S_{23}=S_{32}=0
$$

due to short or open at bisection, both eliminate transfer between the ports + reciprocal circuit

The Wilkinson power divider

- at design frequency (length of the transformer equal to $\lambda_{0} / 4$) we have isolation between the two output ports

The Wilkinson power divider

- 3 XWilkinson = 4-way power divider

Figure 7.15

The Wilkinson power divider

Directional couplers

Four-Port Networks

- A four-port network simultaneously:
- matched at all ports
- reciprocal
- Iossless
- is always directional
- the signal power injected into one port is transmitted only towards two of the other three ports

$$
[S]=\left[\begin{array}{cccc}
0 & \alpha & \beta \cdot e^{j \theta} & 0 \\
\alpha & 0 & 0 & \beta \cdot e^{j \phi} \\
\beta \cdot e^{j \theta} & 0 & 0 & \alpha \\
0 & \beta \cdot e^{j \phi} & \alpha & 0
\end{array}\right]
$$

Directional Coupler

Coupling

Four-Port Networks

- two particular choices commonly occur in practice
- A Symmetric Coupler $\theta=\phi=\pi / 2$

$$
[S]=\left[\begin{array}{cccc}
0 & \alpha & j \beta & 0 \\
\alpha & 0 & 0 & j \beta \\
j \beta & 0 & 0 & \alpha \\
0 & j \beta & \alpha & 0
\end{array}\right]
$$

- An Antisymmetric Coupler $\theta=0, \phi=\pi$

$$
[S]=\left[\begin{array}{cccc}
0 & \alpha & \beta & 0 \\
\alpha & 0 & 0 & -\beta \\
\beta & 0 & 0 & \alpha \\
0 & -\beta & \alpha & 0
\end{array}\right]
$$

Hybrid Couplers

Hybrid Couplers are directional couplers with 3 dB coupling factor

$$
\alpha=\beta=1 / \sqrt{2}
$$

The cuadrature $\left(90^{\circ}\right)$ hybrid $(\theta=\phi=\pi / 2)$

The 180° ring hybrid (rat-race)

$$
(\theta=0, \phi=\pi)
$$

$$
[S]=\frac{1}{\sqrt{2}}\left[\begin{array}{llll}
0 & 1 & j & 0 \\
1 & 0 & 0 & j \\
j & 0 & 0 & 1 \\
0 & j & 1 & 0
\end{array}\right]
$$

$$
[S]=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & -1 \\
1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

The cuadrature $\left(90^{\circ}\right)$ hybrid

Figure 7.21
© John Wiley \& Sons, Inc. All rights reserved.

$$
[S]=\frac{-1}{\sqrt{2}}\left[\begin{array}{llll}
0 & j & 1 & 0 \\
j & 0 & 0 & 1 \\
1 & 0 & 0 & j \\
0 & 1 & j & 0
\end{array}\right]
$$

Even/Odd Mode Analysis

Even/Odd Mode Analysis

(a)

$$
\begin{aligned}
& V=0 \\
& I=\max
\end{aligned}
$$

(b)

Figure 7.23
© John Wiley \& Sons, Inc. All rights reserved.

$$
b_{1}=\frac{1}{2} \Gamma_{e}+\frac{1}{2} \Gamma_{o} \quad b_{2}=\frac{1}{2} T_{e}+\frac{1}{2} T_{o} \quad b_{3}=\frac{1}{2} T_{e}-\frac{1}{2} T_{o} \quad b_{4}=\frac{1}{2} \Gamma_{e}-\frac{1}{2} \Gamma_{o}
$$

Library of ABCD matrices

TABLE 4.1 ABCD Parameters of Some Useful Two-Port Circuits

S parameters (from ABCD)

$$
\mathrm{Y}_{\mathrm{s}}^{\prime}=\left\{\begin{array}{cl}
\mathrm{Y}_{1} & \text { even mode } \\
-\mathrm{Y}_{1} & \text { odd mode }
\end{array}\right.
$$

a)

$$
\left[\begin{array}{c}
\mathrm{V}_{\mathrm{e}} \\
\mathrm{I}_{\mathrm{e}}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
j \mathrm{Y}_{\mathrm{S}} & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & j \mathrm{Z}_{2} \\
j \mathrm{Y}_{2} & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 0 \\
j \mathrm{Y}_{\mathrm{S}} & 1
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{V}_{\mathrm{S}} \\
\mathrm{I}_{\mathrm{s}}
\end{array}\right] \quad\left[\begin{array}{c}
\mathrm{V}_{\mathrm{e}} \\
\mathrm{I}_{\mathrm{e}}
\end{array}\right]=\left[\begin{array}{cc}
-\mathrm{Y}_{\mathrm{S}}^{\prime} \mathrm{Z}_{2} & \mathrm{jZ} \\
-j \mathrm{Y}_{\mathrm{S}} \mathrm{Z}_{2}+j \mathrm{Y}_{2} & -\mathrm{Y}_{\mathrm{S}}^{\prime} \mathrm{Z}_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{V}_{\mathrm{S}} \\
\mathrm{I}_{\mathrm{S}}
\end{array}\right]
$$

$$
S_{11}=\frac{j \frac{Z_{2}}{Z_{0}}-Z_{0}\left(-j Y_{S}^{\prime 2} Z_{2}+j Y_{2}\right)}{-2 Y_{S}^{\prime} Z_{2}+j \frac{Z_{2}}{Z_{0}}+Z_{0}\left(-j Y_{S}^{\prime 2}+j Y_{2}\right)} \quad S_{12}=\frac{2\left[\left(-Y_{S}^{\prime} Z_{2}\right)^{2}-j Z_{2}\left(-j Y_{s}^{\prime 2} Z_{2}+j Y_{2}\right)\right\rfloor}{-2 Y_{s}^{\prime} Z_{2}+j \frac{Z_{2}}{Z_{0}}+Z_{0}\left(-j Y_{S}^{\prime 2} Z_{2}+j Y_{2}\right)}
$$

$$
\Gamma=S_{11}=\frac{j\left(z_{2}-y_{2}+y_{S}^{\prime 2} z_{2}\right)}{-2 y_{S}^{\prime} z_{2}+j\left(z_{2}+y_{2}-y_{S}^{\prime 2} z_{2}\right)}=S_{22}
$$

$$
S_{21}=\frac{2}{-2 Y^{\prime}{ }_{S} Z_{2}+j \frac{Z_{2}}{Z_{0}}+Z_{0}\left(-j Y_{S}^{\prime 2} Z_{2}+j Y_{2}\right)} S_{22}=\frac{j \frac{Z_{2}}{Z_{0}}-Z_{0}\left(-j Y_{S}^{\prime 2} Z_{2}+j Y_{2}\right)}{-2 Y_{S}^{\prime} Z_{2}+j \frac{Z_{2}}{Z_{0}}+Z_{0}\left(-j Y_{S}^{\prime 2} Z_{2}+j Y_{2}\right)}
$$

$$
\mathrm{T}=\mathrm{S}_{21}=\frac{2}{-2 \mathrm{y}_{\mathrm{S}}^{\prime} \mathrm{z}_{2}+\mathrm{j}\left(\mathrm{z}_{2}+\mathrm{y}_{2}-\mathrm{y}_{\mathrm{S}}^{\prime \prime 2} \mathrm{z}_{2}\right)}=\mathrm{S}_{12}
$$

Relation between two port S parameters and ABCD parameters

$$
\begin{aligned}
& A=\sqrt{\frac{Z_{01}}{Z_{02}}} \frac{\left(1+S_{11}-S_{22}-\Delta S\right)}{2 S_{21}} \\
& B=\sqrt{Z_{01} Z_{02}} \frac{\left(1+S_{11}+S_{22}+\Delta S\right)}{2 S_{21}} \\
& C=\frac{1}{\sqrt{Z_{01} Z_{02}}} \frac{1-S_{11}-S_{22}+\Delta S}{2 S_{21}} \\
& D=\sqrt{\frac{Z_{02}}{Z_{01}}} \frac{1-S_{11}+S_{22}-\Delta S}{2 S_{21}}
\end{aligned}
$$

$$
S_{11}=\frac{A Z_{02}+B-C Z_{01} Z_{02}-D Z_{01}}{A Z_{02}+B+C Z_{01} Z_{02}+D Z_{01}}
$$

$$
S_{12}=\frac{2(A D-B C) \sqrt{Z_{01} Z_{02}}}{A Z_{02}+B+C Z_{01} Z_{02}+D Z_{01}}
$$

$$
S_{21}=\frac{2 \sqrt{Z_{01} Z_{02}}}{A Z_{02}+B+C Z_{01} Z_{02}+D Z_{01}}
$$

$$
S_{22}=\frac{-A Z_{02}+B-C Z_{01} Z_{02}+D Z_{01}}{A Z_{02}+B+C Z_{01} Z_{02}+D Z_{01}}
$$

$$
\Delta S=S_{11} S_{22}-S_{12} S_{21}
$$

Matching and coupling factor

$$
\begin{aligned}
& \begin{array}{l}
\Gamma_{e}=\frac{j \cdot\left(z_{2}-y_{2}+y_{1}^{2} z_{2}\right)}{-2 y_{1} z_{2}+j\left(z_{2}+y_{2}-y_{1}^{2} z_{2}\right)} \\
\Gamma_{o}=\frac{j \cdot\left(z_{2}-y_{2}+y_{1}^{2} z_{2}\right)}{2 y_{1} z_{2}+j\left(z_{2}+y_{2}-y_{1}^{2} z_{2}\right)}
\end{array} \\
& T_{e}=\frac{2}{-2 y_{1} z_{2}+j \cdot\left(z_{2}+y_{2}-y_{1}^{2} z_{2}\right)} \\
& T_{o}=\frac{2}{2 y_{1} z_{2}+j \cdot\left(z_{2}+y_{2}-y_{1}^{2} z_{2}\right)} \\
& \begin{array}{l}
b_{1}=\frac{\Gamma_{e}+\Gamma_{o}}{2}=\frac{z_{2}^{2}-\left(y_{2}-y_{1}^{2} z_{2}\right)^{2}}{\left(2 y_{1} z_{2}\right)^{2}+\left(z_{2}+y_{2}-y_{1}^{2} z_{2}\right)^{2}} \\
b_{2}=\frac{T_{e}+T_{o}}{2}=\frac{-2 j\left(z_{2}+y_{2}-y_{1}^{2} z_{2}\right)^{2}}{\left(2 y_{1} z_{2}\right)^{2}+\left(z_{2}+y_{2}-y_{1}^{2} z_{2}\right)^{2}} \\
b_{3}=\frac{T_{e}-T_{o}}{2}=\frac{-4 y_{1} z_{2}}{\left(2 y_{1} z_{2}\right)^{2}+\left(z_{2}+y_{2}-y_{1}^{2} z_{2}\right)^{2}} \\
b_{4}=\frac{\Gamma_{e}-\Gamma_{o}}{2}=\frac{-2 j y_{1} z_{2}\left(z_{2}-y_{2}+y_{1}^{2} z_{2}\right)}{\left(2 y_{1} z_{2}\right)^{2}+\left(z_{2}+y_{2}-y_{1}^{2} z_{2}\right)^{2}} \\
C=10 \log \frac{P_{1}}{P_{3}}=-20 \log \left|b_{3}\right|, d B
\end{array} \\
& b_{1}=0 \Rightarrow z_{2}-y_{2}+y_{1}^{2} z_{2}=0 \Rightarrow z_{2}^{2}=\frac{1}{1+y_{1}^{2}} \\
& y_{2}^{2}=1+y_{1}^{2} \\
& b_{1}=0 b_{4}=0 b_{3}=-y_{1} z_{2} b_{2}=-j z_{2} \\
& \begin{array}{c}
b_{3}=-C \\
b_{2}=-j \sqrt{1-C^{2}}
\end{array} \\
& {[S]=\left[\begin{array}{ccc}
0 & -j \sqrt{1-C^{2}} & -C \\
-j \sqrt{1-C^{2}} & 0 & 0 \\
-C & 0 & 0 \\
0 & -C & -j \sqrt{1-C^{2}}
\end{array}\right.} \\
& \beta=\frac{\sqrt{y_{2}^{2}-1}}{y_{2}}
\end{aligned}
$$

The cuadrature $\left(90^{\circ}\right)$ hybrid

Example

Design a cuadrature $\left(90^{\circ}\right)$ hybrid working on 50Ω, and plot the S parameters between
$0.5 f_{0}$ and $1.5 f_{0}$, where f_{0}
is the frequency at which the length of the branches is $\lambda / 4$

Solution

A cuadrature $\left(90^{\circ}\right)$ hybrid has $\mathrm{C}=3 \mathrm{~dB}$, then $\beta=1 / \sqrt{2}$

$$
\mathrm{y}_{2}=\sqrt{2} \quad \text { and } \quad \mathrm{y}_{1}=1
$$

$Z_{0}=50 \Omega$ the characteristic impedances will be:
$Z_{1}=Z_{0}=50 \Omega \quad Z_{2}=\frac{Z_{0}}{\sqrt{2}}=35.4 \Omega$

The cuadrature $\left(90^{\circ}\right)$ hybrid

The cuadrature $\left(90^{\circ}\right)$ hybrid

- eight-way microstrip power divider with six quadrature hybrids in a Bailey configuration

Datasheet

The 180° ring hybrid (rat-race)

The 180° ring hybrid

Figure 7.41
© John Wiley \& Sons, Inc. All rights reserved.

- The 180° ring hybrid can be operated in different modes:
- a signal applied to port 1 will be evenly split into two in-phase components at ports 2 and 3
- input applied to port 4 it will be equally split into two components with a 180° phase difference at ports 2 and 3
- input signals applied at ports 2 and 3, the sum of the inputs will be formed at port 1, while the difference will be formed at port 4 (power combiner)

Even/Odd Mode Analysis

Even Mode

plan de simetrie
a)

scurtcircuit (sc.)
b)

Odd Mode

c)

Even/Odd Mode Analysis

$S_{11}=\frac{j z_{2} y_{s}+j z_{2}-j\left(y_{2}+y_{e} y_{s} z_{2}\right)-j y_{e} z_{2}}{j z_{2} y_{s}+j z_{2}+j\left(y_{2}+y_{e} y_{s} z_{2}\right)+j y_{e} z_{2}}$ $S_{12}=\frac{2}{j z_{2} y_{s}+j z_{2}+j\left(y_{2}+y_{e} y_{s} z_{2}\right)+j y_{e} z_{2}}$

Even mode:

$$
\begin{aligned}
& y_{\mathrm{e}}=-\mathrm{j} \mathrm{y}_{1} \\
& \mathrm{y}_{\mathrm{s}}=\mathrm{jy} y_{1}
\end{aligned}
$$

Matching condition

$$
y_{1}^{2}+y_{2}^{2}=1
$$

$$
s_{11 \mathrm{e}}=\frac{\mathrm{z}_{2}-\mathrm{y}_{2}-\mathrm{y}_{1}^{2} z_{2}+2 \mathrm{j} \mathrm{z}_{2} \mathrm{y}_{1}}{\mathrm{z}_{2}+\mathrm{y}_{2}+\mathrm{y}_{1}^{2} \mathrm{z}_{2}}
$$

$$
S_{12 \mathrm{c}}=S_{21 \mathrm{c}}=\frac{-2 \mathrm{j}}{\mathrm{z}_{2}+\mathrm{y}_{2}+\mathrm{y}_{1}^{2} z_{2}}
$$

$$
\mathrm{S}_{22 \mathrm{e}}=\frac{\mathrm{z}_{2}-\mathrm{y}_{2}-\mathrm{y}_{1}^{2} \mathrm{z}_{2}-2 \mathrm{j} \mathrm{z}_{2} \mathrm{y}_{1}}{\mathrm{z}_{2}+\mathrm{y}_{2}+\mathrm{y}_{1}^{2} \mathrm{z}_{2}}
$$

$S_{21}=\frac{2}{j z_{2} y_{s}+j z_{2}+j\left(y_{2}+y_{e} y_{S} z_{2}\right)+j y_{e} z_{2}}$
$S_{22}=\frac{-j z_{2} y_{s}+j z_{2}-j\left(y_{2}+y_{e} y_{s} z_{2}\right)+j y_{e} z_{2}}{j z_{2} y_{s}+j z_{2}+j\left(y_{2}+y_{e} y_{s} z_{2}\right)+j y_{e} z_{2}}$

Odd mode:

$$
\begin{gathered}
y_{\mathrm{e}}=j y_{1} \\
\mathrm{y}_{\mathrm{s}}=-j y_{1} \\
S_{11 o}=\frac{z_{2}-y_{2}-y_{1}^{2} z_{2}-2 j z_{2} y_{1}}{z_{2}+y_{2}+y_{1}^{2} z_{2}} \\
S_{12 o}=S_{21 o}=\frac{-2 j}{z_{2}+y_{2}+y_{1}^{2} z_{2}} \\
S_{22 o}=\frac{z_{2}-y_{2}-y_{1}^{2} z_{2}+2 j z_{2} y_{1}}{z_{2}+y_{2}+y_{1}^{2} z_{2}}
\end{gathered}
$$

The 180° ring hybrid

$$
\begin{aligned}
& {[S]=\left[\begin{array}{cccc}
0 & -j y_{2} & -j y_{1} & 0 \\
-j y_{2} & 0 & 0 & j y_{1} \\
-j y_{1} & 0 & 0 & -j y_{2} \\
0 & j y_{1} & -j y_{2} & 0
\end{array}\right]=-j\left[\begin{array}{cccc}
0 & \alpha & \beta & 0 \\
\alpha & 0 & 0 & -\beta \\
\beta & 0 & 0 & \alpha \\
0 & -\beta & \alpha & 0
\end{array}\right]} \\
& C(d B)=-20 \log (\beta)=-20 \log \left(y_{1}\right)
\end{aligned}
$$

Example

Design a ring $\left(180^{\circ}\right)$ hybrid working on 50Ω, and plot the S parameters between 0.5 and 1.5 of the design frequency.
$C[\mathrm{~dB}]=-20 \log \left(y_{1}\right)$

$$
\sqrt{2} \mathrm{Z}_{0}=70.7 \Omega
$$

The 180° ring hybrid

$C[\mathrm{~dB}]=-20 \cdot \log _{10}\left(y_{1}\right)$

The 180° ring hybrid

Figure 7.43
Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Coupled Line Coupler

Coupled Lines

b) EVEN MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

Even mode - characterizes the common mode signal on the two lines
Odd mode - characterizes the differential mode signal between the two lines

- Each of the two modes is

c) ODD MODE ELECTRIC FIELD PATTERN (SCHEMATIC) characterized by different characteristic impedances

Coupled Lines

(a)

(b)

(c)

Coupled Lines

Matching in Coupled Line Coupler

Directivity and Coupling factor

$$
a_{1}=a_{1 e}+a_{1 o}=1, a_{2}=a_{3}=a_{4}=0
$$

$$
\mathrm{b}_{1}=\frac{1}{2}\left(\Gamma_{\mathrm{e}}+\Gamma_{\mathrm{o}}\right)=0 \Leftrightarrow
$$

$$
b_{2}=\frac{1}{2}\left(\Gamma_{e}-\Gamma_{o}\right)=\frac{j C \sin (\theta)}{\cos (\theta) \sqrt{1-C^{2}}+j \sin (\theta)}
$$

$$
\theta=\pi / 2
$$

$$
\mathrm{b}_{3}=\frac{1}{2}\left(\mathrm{~T}_{\mathrm{e}}-\mathrm{T}_{\mathrm{o}}\right)=0
$$

$$
\begin{aligned}
& b_{4}=\frac{1}{2}\left(T_{e}+T_{o}\right)=\frac{\sqrt{1-C^{2}}}{\cos (\theta) \sqrt{1-C^{2}}+j \sin (\theta)} \\
& C=\frac{Z_{c e}-Z_{c o}}{Z_{c e}+Z_{c o}}
\end{aligned}
$$

$[S]=\left[\begin{array}{cccc}0 & C & 0 & -j \sqrt{1-C^{2}} \\ C & 0 & -j \sqrt{1-C^{2}} & 0 \\ 0 & -j \sqrt{1-C^{2}} & 0 & C \\ -j \sqrt{1-C^{2}} & 0 & C & 0 \\ \hline\end{array}\right.$

Coupled Line Coupler

$$
[S]=-j \cdot\left[\begin{array}{cccc}
0 & \sqrt{1-C^{2}} & j C & 0 \\
\sqrt{1-C^{2}} & 0 & 0 & j C \\
j C & 0 & 0 & \sqrt{1-C^{2}} \\
0 & j C & \sqrt{1-C^{2}} & 0
\end{array}\right]
$$

$$
[S]=\frac{1}{\sqrt{2}}\left[\begin{array}{llll}
0 & 1 & j & 0 \\
1 & 0 & 0 & j \\
j & 0 & 0 & 1 \\
0 & j & 1 & 0
\end{array}\right]
$$

Normalized even- and odd-mode characteristic impedance design data for edge-coupled striplines.

Even- and odd-mode characteristic impedance design data for coupled microstrip lines on a substrate with $\varepsilon_{\mathrm{r}}=10$.

Coupled Line Coupler

Coupled Line Coupler

Example

Design a coupled line coupler with 20 dB coupling factor, using stripline technology, with a distance between ground planes of 0.158 cm and an electrical permittivity of 2.56 , working on 50Ω, at the design frequency of 3 GHz . Plot the coupling and directivity between 1 and 5 GHz .

Solution

Simulation

ADS linecalc

- In schematics: >Tools>LineCalc>Start
- for Microstrip lines >Tools>LineCalc>Send to Linecalc

[^0]
ADS linecalc

- 1. Define substrate (receive from schematic)

2. Insert frequency

- 3. Insert input data
- Analyze: W,L \rightarrow Zo,E or Ze,Zo,E / at f [GHz]
- Synthesis: Zo, E \rightarrow W,L/at $\mathrm{f}[\mathrm{GHz}]$

ADS linecalc

－Can be used for：
－microstrip lines MLIN：W，L \Leftrightarrow Zo，E
＂microstrip coupled lines MCLIN：W，L，S $\Leftrightarrow \mathrm{Ze}, \mathrm{Zo}, \mathrm{E}$

Inin Lineacturntited

口手困是

$\sum_{z=10}$ LineCalc／untitled
File Simulation Options Help
$\square \square \square$

Component

Type MCLIN \quad ID MCLIN：MCLIN＿DEFAULT $~-~$

Calculated Results
$\mathrm{KE}=6.978$
$\mathrm{KO}=4.870$
$K O=4.870$
AE＿DB $=0.018$
$A O-D B=0.032$
SkinDepth $=0.025$

ADS linecalc

Multisection Coupled Line Couplers

Figure 7.35
© John Wiley \& Sons, Inc. All rights reserved.

$$
\begin{gathered}
\frac{V_{3}}{V_{1}}=b_{3}=\frac{j C \sin \theta}{\cos \theta \sqrt{1-C^{2}}+j \sin \theta}=\frac{j C \operatorname{tg} \theta}{\sqrt{1-C^{2}}+j \operatorname{jtg} \theta} \approx \frac{j C \operatorname{tg} \theta}{1+j \operatorname{jtg} \theta}=j C \sin \theta e^{-j \theta} \\
\frac{V_{2}}{V_{1}}=b_{2}=\frac{\sqrt{1-C^{2}}}{\cos \theta \sqrt{1-C^{2}}+j \sin \theta} \approx \frac{1}{\cos \theta+j \sin }=e^{-j \theta} \\
C=\frac{V_{3}}{V_{1}}=2 j \sin \theta e^{-j \theta} e^{-j(N-1) \theta}\left[C_{1} \cos (N-1) \theta+C_{2} \cos (N-3) \theta+\ldots+\frac{1}{2} C_{N+1}^{2}\right]
\end{gathered}
$$

Example

Design a three sections coupled line coupler with 20 dB coupling factor, binomial characteristic (maximum flat), working on 50Ω, at the design frequency of 3 GHz . Plot the coupling and directivity between 1 and 5 GHz

Solution

$$
\left.\frac{d^{n}}{d \theta^{n}} C(\theta)\right|_{\theta=\pi / 2}=0, n=1,2
$$

$C=\left|\frac{V_{3}}{V_{1}}\right|=2 \sin \theta\left[C_{1} \cos 2 \theta+\frac{1}{2} C_{2}\right]=C_{1}(\sin 3 \theta-\sin \theta)+C_{2} \sin \theta$

$$
\begin{array}{ll}
\frac{d C}{d \theta}=\left.\left[3 C_{1} \cos 3 \theta+\left(C_{2}-C_{1}\right) \cos \theta\right]\right|_{\theta=\pi / 2}=0 & Z_{0 e}^{1}=Z_{0 e}^{3}=50 \sqrt{\frac{1.0125}{0.9875}}=50.63 \Omega \\
\frac{d^{2} C}{d \theta^{2}}=\left.\left[-9 C_{1} \sin 3 \theta-\left(C_{2}-C_{1}\right) \sin \theta\right]\right|_{\theta=\pi / 2}=10 C_{1}-C_{2}=0 & Z_{0 o}^{1}=Z_{0 o}^{3}=50 \sqrt{\frac{0.9875}{1.0125}}=49.38 \Omega \\
\begin{cases}C_{2}-2 C_{1}=0.1 & Z_{0 e}^{2}=50 \sqrt{\frac{1.125}{0.875}}=56.69 \Omega \\
10 C_{1}-C_{2}=0 & Z_{0 o}^{2}=50 \sqrt{\frac{0.875}{1.125}}=44.10 \Omega\end{cases} \\
\left\{\begin{array}{l}
C_{1}=C_{3}=0.0125 \\
C_{2}=0.125
\end{array}\right. &
\end{array}
$$

Simulare

The Lange Coupler

- allows achieving coupling factors of 3 or 6 dB

Figure 7.38
© John Wiley \& Sons, Inc. All rights reserved.

The Lange Coupler

Figure 7.39
© John Wiley \& Sons, Inc. All rights reserved.

Circuit model

$$
\begin{aligned}
& Z_{o 4}=\frac{1}{v C_{o 4}} \\
& C_{e 4}=\frac{C_{e}\left(3 C_{e}+C_{o}\right)}{C_{e}+C_{o}} \quad Z_{e 4}=Z_{0 e} \frac{Z_{0 e}+Z_{0 o}}{3 Z_{0 o}+Z_{0 e}} \\
& C_{o 4}=\frac{C_{o}\left(3 C_{o}+C_{e}\right)}{C_{e}+C_{o}} \\
& Z_{o 4}=Z_{0 o} \frac{Z_{0 e}+Z_{0 o}}{3 Z_{0 e}+Z_{0 o}} \\
& Z_{0 e}=\frac{4 C-3+\sqrt{9-8 C^{2}}}{2 C \sqrt{(1-C) /(1+C)}} Z_{0} \\
& Z_{0 o}=\frac{4 C+3-\sqrt{9-8 C^{2}}}{2 C \sqrt{(1+C) /(1-C)}} Z_{0}
\end{aligned}
$$

The Lange Coupler

Directional Couplers
Laboratory no. 2

Directional Coupler

 $C=10 \log \frac{P_{1}}{P_{3}}=-20 \cdot \log (\beta)[\mathrm{dB}]$

Directivitate
$D=10 \log \frac{P_{3}}{P_{4}}=20 \cdot \log \left(\frac{\beta}{\left|S_{14}\right|}\right)[\mathrm{dB}]$
Izolare
$I=10 \log \frac{P_{1}}{P_{4}}=-20 \cdot \log \left|S_{14}\right|[\mathrm{dB}]$

The cuadrature $\left(90^{\circ}\right)$ hybrid

Quadrature coupler

The 180° ring hybrid (rat-race)

$C[\mathrm{~dB}]=-20 \cdot \log _{10}\left(y_{1}\right)$

Ring coupler

Figure 7.43
Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Coupled Line Coupler

Coupled line coupler

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

[^0]: Values are consistent

